Google techs for developers

JIEUNG KIM jieungkim@inha.ac.kr

© 2023 Jieung Kim, All rights reserved

Contents

- Who am I?
- Websites and Youtube channels for Google techs and lives
- Google technologies: Programming language style guides
- Google technologies: Googletest framework
- Google technologies: Machine learning related tools
 - Colab
 - Tensorflow and Keras
 - Tensorflow model optimization toolkit
 - Tensorflow hub and model garden
 - Tensorboard
- Summary

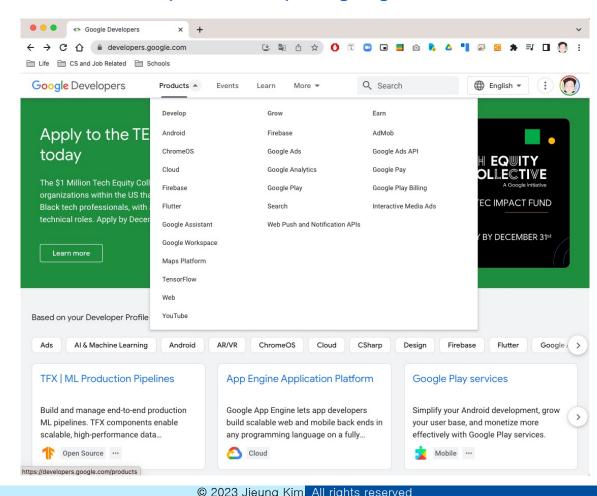
Who am I?

© 2023 Jieuna Kim. All rights reserved

Who am I?

Who am I? – <u>https://jieung.kim</u>

- I am an **assistant professor** in **Computer Engineering Department**, College of Software and Convergence, Inha University (Incheon, South Korea)
- Before that, I was a **research engineer** at Google
 - Worked on machine learning model optimizations (2022.03~2022.08)
 - Worked on **pKVM formal verification** (2020.05~2022.02)
 - **pKVM**: a new software stack in the Android ecosystem to increase security
 - Formal verification: the strongest method to show the correctness and security properties of software with using mathematical and computational logic methods
- Even before that, I was at Yale University as a graduate student, worked on other formal verification projects
 - Verify OS & hypervisor based on xv6 (CertiKOS)
 - Provide unified and verified APIs for distributed protocol (ADO)
- I received my M.S. and B.S. from KAIST and SKKU (South Korea), respectively



Websites and Youtube channels for Google techs and lives

Google developers

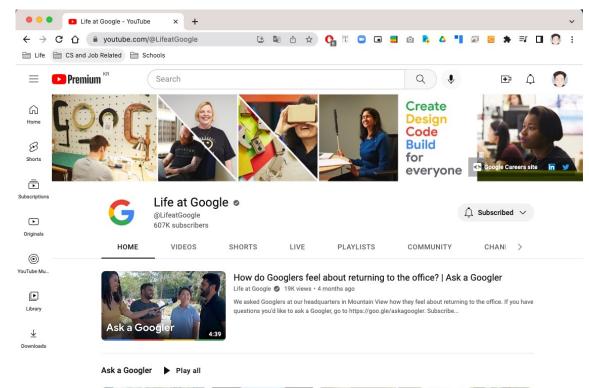
https://developers.google.com/

Tech dev guide

https://techdevguide.withgoogle.com/

G Google Tech Dev Guide	× +	~
 ← → C ☆ ● techdevguide □ Life □ CS and Job Related □ S 		≕ 🛛 🌖 :
Google Tech Dev Guid	Overview Collections Resource Library For Educators Explore CS Q Searce	h Sign in
	Help us improve the Tech Dev Guide. Take the survey	×

Interested in pursuing a career in business? Check out Google's Business Dev Guide.



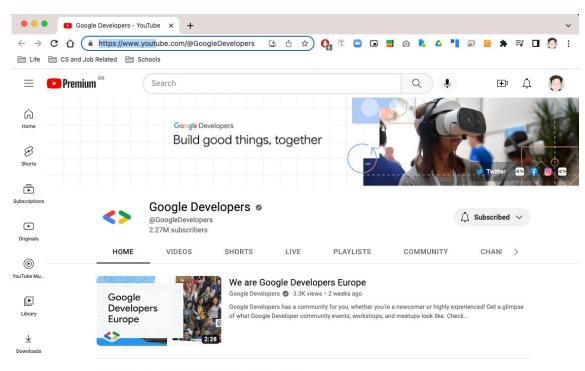
This site uses cookies from Google to deliver its services and analyze traffic.

© 2023 Jieuna Kim. All rights reserved

Youtube, Life at Google

https://www.youtube.com/lifeatgoogle

How do Googlers feel about


How do Googlers feel about Asking Go

© 2023 Jieuna Kim. All rights reserved

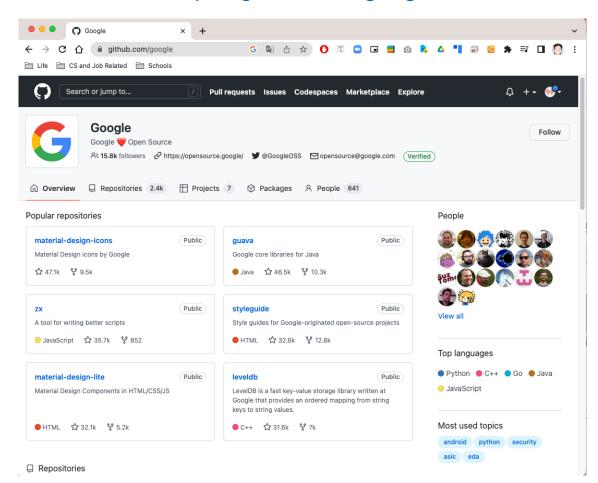
Asking Google employees Google recruiters share

Youtube, Google Developers

https://www.youtube.com/GoogleDevelopers

Google Developers Top 10 (updated weekly!) > Play all

Check out our top 10 videos from last week. Come back weekly for updates to Google Developer's products, services, and programs!



© 2023 Jieuna Kim. All rights reserved

Google repository at Github

https://github.com/google

Google style guide

https://google.github.io/styleguide/

•••	Soogle Style Guides styleguid ×	+										~
$\leftrightarrow \rightarrow c$	🖞 🏠 🧯 google.github.io/styleguide	e/ G	ēr ሰ	☆	🖰 T 🛄	• =	Ö 🖡 (s ••• 6) 🔛 🖠	• ≡/	•	:
🗎 Life 🗎	CS and Job Related 📄 Schools											

styleguide

Google Style Guides

Every major open-source project has its own style guide: a set of conventions (sometimes arbitrary) about how to write code for that project. It is much easier to understand a large codebase when all the code in it is in a consistent style.

"Style" covers a lot of ground, from "use camelCase for variable names" to "never use global variables" to "never use exceptions." This project (google/styleguide) links to the style guidelines we use for Google code. If you are modifying a project that originated at Google, you may be pointed to this page to see the style guides that apply to that project.

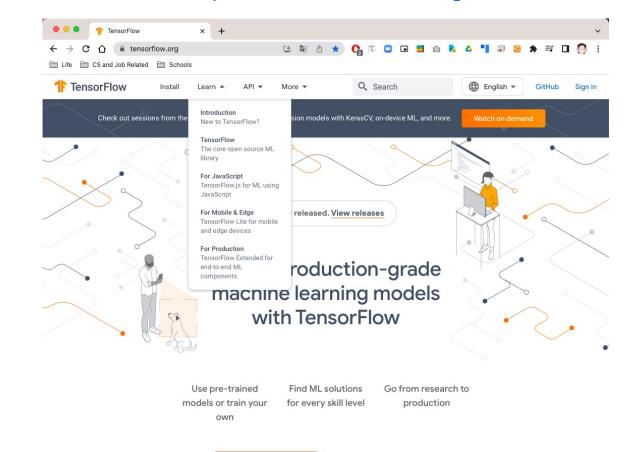
- AngularJS Style Guide
- Common Lisp Style Guide
- C++ Style Guide
- C# Style Guide
- Go Style Guide
- HTML/CSS Style Guide
- JavaScript Style Guide
- Java Style Guide
- Objective-C Style Guide
- Python Style Guide
- R Style Guide
- Shell Style Guide
- Swift Style Guide
- TypeScript Style Guide
- Vim script Style Guide

This project also contains cpplint, a tool to assist with style guide compliance, and google-c-style.el, an Emacs settings file for Google

etvla

Googletest framework

https://github.com/google/googletest


C C G github.com/google/googletest	G	ēg (j ☆	O	1,2	•		Ó		•		7		≡ſ	
ife 📄 CS and Job Related 📄 Schools															
∃ README.md								C	ontril	bute	ors	374			
GoogleTest								5)))	6			?	C.	
Announcements								+	363 c	contr	ributor	ſS			
${\mathscr O}$ Live at Head															
GoogleTest now follows the Abseil Live at Head phile latest commit in the main branch as often as possi		Ne reco	ommer	nd up	dating	g to f	the				ents -page		tive		
Documentation Updates															
Our documentation is now live on GitHub Pages at recommend browsing the documentation on GitHub repository.					-		Ve	La	C++	-	1%	Pyti		1%	
Release 1.12.1								•			0.8%		hell 0.	2%	
Release 1.12.1 is now available.															
The 1.12.x branch will be the last to support C++11. C++14.	Future re	leases	will red	quire	at lea	ist									
Coming Soon															
• We are planning to take a dependency on Abse	il.														
	d.														

This repository is a merger of the formerly separate GoogleTest and GoogleMock projects. These were so closely related that it makes sense to maintain and release them together.

Tensorflow

https://www.tensorflow.org/

ecosystem

Google technologies: Programming language style guides

© 2023 Jieuna Kim, All rights reserved

Programming language style guides

Programming language style guides

- A guide of programming conventions, style, and best practices for a team or project
- Following the guides in the development make team's code more consistent and readable
 - Consistent code is easier to read and understand making it faster to add new features
 - Code review process is usually check whether the code follows style guides

Code review

Code review

• Careful, systematic study of source code by people who are not the original author of the code

Purpose of code review

- Can catch many bugs, design flaws early
- > 1 person has seen every piece of code
 - Insurance against author's disappearance
- Forcing function for documentation and code improvements
 - Authors to articulate their decisions
 - Authors participate in the discovery of flaws
 - Prospect of someone reviewing your code raises quality threshold
- Inexperienced personnel get hands-on experience without hurting code quality
 - Pairing them up with experienced developers
 - Can learn by being a reviewer as well

Code review

• Purpose of code review - by numbers

- From Steve McConnel's <u>Code Complete</u>
- Average defect detection rates
 - Unit testing: 25%
 - Function testing: 35%
 - Integration testing: 45%
 - Design and code inspections (reviews): 55% and 60%
- 11 programs developed by the same group of people
 - First 5 without reviews: average 4.5 errors per 100 lines of code
 - Remaining 6 with reviews: average 0.82 errors per 100 lines of code
 - Errors reduced by > 80%
- After AT&T introduced reviews, 14% increase in productivity and a 90% decrease in defects

Google C++ Style Guide

Table of Contents

C++ Version	
Header Files	Self-contained Headers The #define Guard Include What You Use Forward Declarations Inline Functions Names and Order of Includes
Scoping	Namespaces Internal Linkage Nonmember, Static Member, and Global Functions Local Variables Static and Global Variables thread local Variables
<u>Classes</u>	Doing Work in Constructors Implicit Conversions Copyable and Movable Types Structs vs. Classes Structs vs. Pairs and Tuples Inheritance Operator Overloading Access Control Declaration Order
Functions	Inputs and Outputs Write Short Functions Function Overloading Default Arguments Trailing Return Type Syntax
<u>Google-</u> <u>Specific</u> <u>Magic</u>	Ownership and Smart Pointers cpplint
<u>Other C++</u> Features	Rvalue References Friends Exceptions noexcept Run-Time Type Information (RTTI) Casting Streams Preincrement and Predecrement Use of const Use of constexpr Integer Types 64-bit Portability Preprocessor Macros 0 and nullptr/NULL sizeof Type Deduction (including auto) Class Template Argument Deduction Designated Initializers Lambda Expressions Template Metaprogramming Boost Other C++ Features Nonstandard Extensions Aliases
Inclusive Language	
<u>Naming</u>	General Naming Rules File Names Type Names Variable Names Constant Names Function Names Namespace Names Enumerator Names Macro Names Exceptions to Naming Rules
Comments	Comment Style File Comments Class Comments Function Comments Variable Comments Implementation Comments

 \sim

🗀 Life 📋 CS and Job Related 📋 Schools

^{co}Inputs and Outputs

The output of a C++ function is naturally provided via a return value and sometimes via output parameters (or in/out parameters).

Prefer using return values over output parameters: they improve readability, and often provide the same or better performance.

Prefer to return by value or, failing that, return by reference. Avoid returning a pointer unless it can be null.

Parameters are either inputs to the function, outputs from the function, or both. Non-optional input parameters should usually be values or const references, while non-optional output and input/output parameters should usually be references (which cannot be null). Generally, use std::optional to represent optional by-value inputs, and use a const pointer when the non-optional form would have used a reference. Use non-const pointers to represent optional outputs and optional input/output parameters.

Avoid defining functions that require a const reference parameter to outlive the call, because const reference parameters bind to temporaries. Instead, find a way to eliminate the lifetime requirement (for example, by copying the parameter), or pass it by const pointer and document the lifetime and non-null requirements.

When ordering function parameters, put all input-only parameters before any output parameters. In particular, do not add new parameters to the end of the function just because they are new; place new input-only parameters before the output parameters. This is not a hard-and-fast rule. Parameters that are both input and output muddy the waters, and, as always, consistency with related functions may require you to bend the rule. Variadic functions may also require unusual parameter ordering.

[⇔]Write Short Functions

Prefer small and focused functions.

We recognize that long functions are sometimes appropriate, so no hard limit is placed on functions length. If a function exceeds about 40 lines, think about whether it can be broken up without harming the structure of the program.

Even if your long function works perfectly now, someone modifying it in a few months may add new behavior. This could result in bugs that are hard to find. Keeping your functions short and simple makes it easier for other people to read and modify your code. Small functions are also easier to test.

You could find long and complicated functions when working with some code. Do not be intimidated by modifying existing code: if working with such a function proves to be difficult, you find that errors are hard to debug, or you want to use a piece of it in several different contexts, consider breaking up the function into smaller and more manageable pieces.

[⇔]Function Overloading

Use overloaded functions (including constructors) only if a reader looking at a call site can get a good idea of what is happening without having to first figure out exactly which overload is being called.

Definition.

Examples

Some common guidelines in multiple C++ style guide

- The rule of the three: If a class defines one (or more) of the following, it should explicitly define all three, which are 1) destructor, 2) copy constructor, 3) copy assignment operator
- Do not use #define unless you have to use it
- Try to use **const** member functions and variables
- Set up the criteria on class, function, field, and variable names
- Locate functions in proper classes
- Try to use initializer list
- Use iteration over STL containers
- ...


```
#define Fresh 1
                               #define Sophomore 2
                                                                          Do not use #define
                               #define Junior 3
                               #define Senior 4
                               class Student {
                                 public:
Violate the rule of
                                                                          Initializer list is not used
                                 Student(int id, int year) {
                                 student id = id;
the three
                                   student year = year;
                                 };
                                 ~Student();
Inconsistency in
                                int GetStudentID() { return student id; }
function names
                                 int get student year() { return student year; }
                                 private:
                                 int student id;
                                                                Fields are not distinguishable from local variables
                                 int student year;
                               };
                                                                                           References should be used
                               bool FindStudent(int id, std::vector<Student> students) {
                                 for (int i = 0; i < students.size(); i++) {</pre>
                                   if (students[i].GetStudentID() == id) {
                                                                                      Iterator is not used
                                     return true;
                                 return false;
```

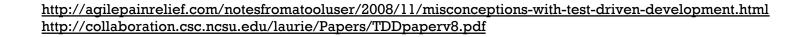
```
class Student {
 public:
  enum StudentYear { FRESH = 1, Sophomore, Junior, Senior };
  Student(const int id, const StudentYear year) :
    id (id), year (year) {};
  Student(const Student& student) :
    id (student.id ), year (student.year_) {};
  Student& operator=(const Student& student) {
    if (this != &student) {
      *this = Student(student);
    return *this;
  };
  ~Student();
  int GetId() { return id ; }
  int GetYear() { return year ; }
 bool FindStudent(const int id,
    const std::vector<Student>& students) const {
    for (const auto& student : students) {
     if (student.id == id) {
        return true;
    return false;
```

private:

};

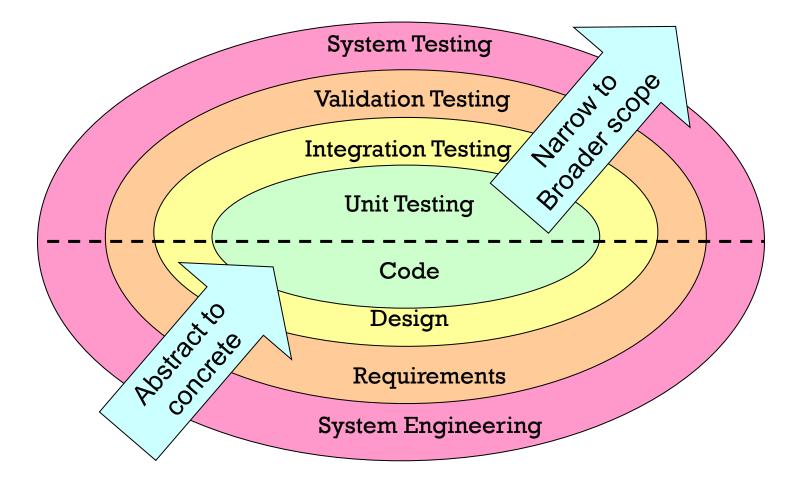
```
const int id_;
StudentYear year_;
```


Google technologies: GoogleTest Framework


Software testing

Software testing

• Evaluation of the software against requirements gathered from users and system specifications


• Does testing really work?

- "measuring over 20 projects: if you have a large number of unit tests your code will be an order of magnitude (x10) less complex."
- Controlled study results:
 - "..quality increased linearly with the number of programmer tests..."
 - "..test-first students on average wrote more tests and, in turn, students who wrote more tests tended to be more productive..."

Software testing

Software testing

Unit testing frameworks and libraries

- Java
 - NUnit, Junit, TestNG, Mockito, and PHPUnit
- Python
 - Robot, **PyTest**, **Unittest**, DocTest, Nose2, and Testify
- C/C++
 - Googletest, Boot Test Library, QA Systems Cantata, Parasoft C/C++ test, Microsoft Visual Studio, Cppunit, Catch, Bandit, and CppUTest
- JavaScript
 - Jest, Mocah, Storybook, Jasmine, Cypress, Puppeteer, Testing Library, and WebdriverIO

Googletest framework

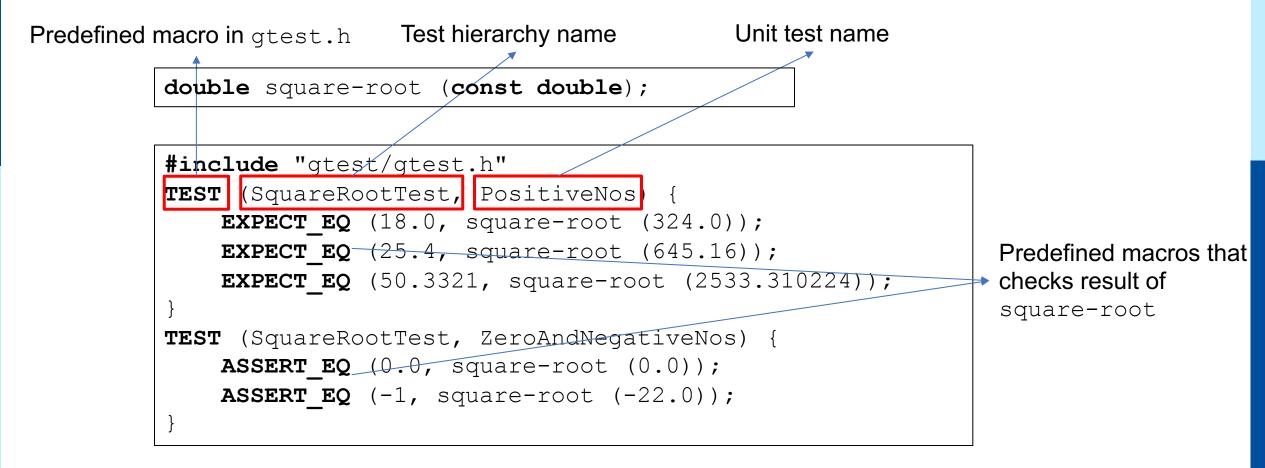
Googletest framework

- A unit testing library for the C++ programming language.
- Repository
 - <u>http://code.google.com/p/googletest/</u>
- Projects using Google Test
 - Android open source project operating system
 - Chromium projects (behind the Chrome browser, Edge browser, and Chrome OS)
 - LLVM compiler
 - Protocol Buffers (Google's data interchange format)
 - OpenCV computer vision library
 - Several internal C++ projects at Google
- Study materials
 - README file: https://github.com/google/googletest/blob/master/README.md
 - Googletest user's guide: <u>https://google.github.io/googletest/</u>
 - Whittaker, James (2012). <u>How Google Tests Software</u>. Boston, Massachusetts: Pearson Education. ISBN 0-321-80302-7

Create tests

• Creating a basic test

• Target code: prototype for square-root


```
double square-root (const double);
```

Test case with Googletest

```
#include "gtest/gtest.h"
TEST (SquareRootTest, PositiveNos) {
    EXPECT_EQ (18.0, square-root (324.0));
    EXPECT_EQ (25.4, square-root (645.16));
    EXPECT_EQ (50.3321, square-root (2533.310224));
}
TEST (SquareRootTest, ZeroAndNegativeNos) {
    ASSERT_EQ (0.0, square-root (0.0));
    ASSERT_EQ (-1, square-root (-22.0));
}
```


Create tests

Check results

Basic assertions

Fatal assertion	Nonfatal assertion	Verifies
ASSERT_TRUE (condtion);	EXPECT_TRUE (condtion);	Condition is true
ASSERT_FALSE (condition);	EXPECT_FALSE (condition);	Condition is false

Check results

• Binary comparison

Fatal assertion	Nonfatal assertion	Verifies				
ASSERT_EQ(expected,	EXPECTED_EQ(expected,	expected == actual				
actual);	actual);					
ASSERT_NE(val1, val2);	EXPECT_NE(val1, val2);	val1 != val2				
ASSERT_LT(val1, val2);	EXPECT_LT(val1, val2);	val1 < val2				
ASSERT_LE(val1, val2);	EXPECT_LE(val1, val2);	val1 <= val2				
ASSERT_GT(val1, val2);	EXPECT_GT(val1, val2);	val1 > val2				
ASSERT_GE(val1, val2);	EXPECT_GE(val1, val2);	val1 >= val2				

Run tests

- Initialize the framework
- Must be called before RUN_ALL_TESTS

- Must be called only once
 - Multiple calls to it conflicts some features of the framework
- Automatically detects and runs all test tests defined using the TEST macro

Run tests

Running main() from user_main.cpp
[========] Running 2 tests from 1 test case.
[] Global test environment set-up.
[] 2 tests from SquareRootTest
[RUN] SquareRootTest.PositiveNos
\user_sqrt.cpp(6862): error: Value of: sqrt (2533.310224) Actual: 50.332
Expected: 50.3321
[FAILED] SquareRootTest.PositiveNos (9 ms)
[RUN] SquareRootTest.ZeroAndNegativeNos
[OK] SquareRootTest.ZeroAndNegativeNos (0 ms)
[] 2 tests from SquareRootTest (0 ms total)
[] Global test environment tear-down
[=======] 2 tests from 1 test case ran. (10 ms total)
[PASSED] 1 test.
[FAILED] 1 test, listed below:
[FAILED] SquareRootTest.PositiveNos
1 FAILED TEST

Google technologies: Machine learning related tools

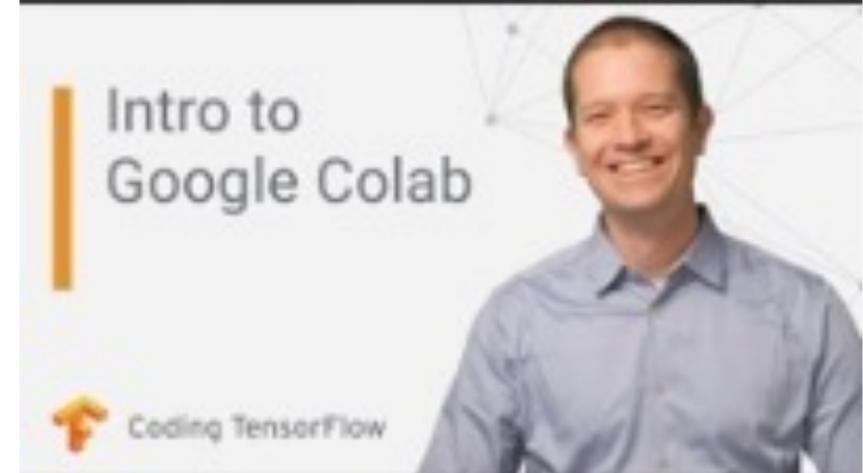
Machine learning related tools

Machine learning related tools

- Colab: Allows you to write and execute Python in your browser, with zero configuration required, access to GPUs free of charge, and easy sharing
- Tensorflow and Keras
 - Tensorflow : A free and open-source software library for machine learning and artificial intelligence
 - Keras (an interface for the Tensorflow library): An open-source software library that provides a Python interface for artificial neural networks
- Tensorflow hub and model garden: Pre-built tensorflow models
- Tensorflow model optimization toolkit: A suite of tools for optimizing ML models for deployment and execution
- Tensorboard: Provides the visualization and tooling needed for machine learning experimentation

Colab

• Colab


- A project from Google Research, a free, Jupyter based environment
- It allows us to create Jupyter programming notebooks to write and execute Python in a web browser
 - It also supports other Python-based third-party tools and machine learning frameworks such as Pandas, PyTorch, Tensorflow, Keras, Monk, OpenCV, and others
- Google provides the use of free GPU for your Colab notebooks

Colab

Introduction to Colab

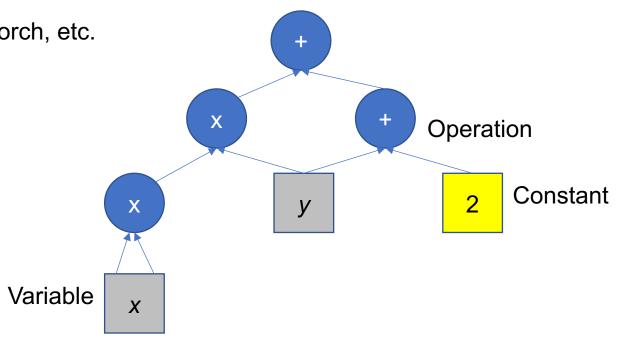
인하대학교 INHA UNIVERSITY

Colab

Welcome To Colab (<u>https://colab.research.google.com/</u>)

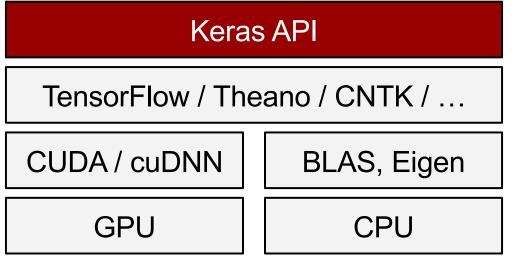
 ♦ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥	rch.google.com/#scrollTo= 🔍 🗟 🊖 🕐 🏗 🖬 🖬 🖬 🖉 🖓 🕅
CO Welcome To Colaborat File Edit View Insert Ru	C Share 🐺 🚺
\equiv Table of contents \Box $ imes$	+ Code + Text & Copy to Drive Connect 🗸 🎽 Editing
Q Getting started Data science {x}	Welcome to Colab! Solution Solution
Machine learning More Resources Featured examples	If you're already familiar with Colab, check out this video to learn about interactive tables, the executed code history view, and the command palette.
	What is Colab? Colab, or "Colaboratory", allows you to write and execute Python in your browser, with • Zero configuration required • Access to GPUs free of charge • Easy sharing Whether you're a student , a data scientist or an AI researcher , Colab can make your work easier. Watch
$\langle \rangle$	Introduction to Colab to learn more, or just get started below!

=


• Deep learning frameworks

• Deep learning frameworks

- Tools for defining static or dynamic general-purpose computational graphs
- Seamless CPU / GPU usage
- Python / numpy or R interfaces instead of C, C++, CUDA or HIP
- Open source


Tensorflow (<u>https://www.tensorflow.org/</u>)

- Deep learning frameworks from Google (The initial version was the name with DistBelief)
- It can be used in a wide variety of programming languages (e.g., Python, JavaScript, C++, and Java)
- Companies using Tensorflow
 - Google : Translate, Google Brain's Magenta
 - DeepMind : WaveNet Text to Speech

• Keras

- A high-level neural networks API
- A frontend API for Tensorflow 2.0
 - https://keras.io/
 - <u>https://www.tensorflow.org/guide/keras</u>
- It dramatically increase the usability of Tensorflow

Tensorflow 1.0 and Tensorflow 2.0

```
#Tensorflow xor
import tensorflow as tf
import numpy as np
learning_rate = 0.1
X_{train} = [[0, 0], [0, 1], [1, 0], [1, 1]]
Y_train = [[0], [1], [1], [0]]
X_train = np.array(X_train, dtype=np.float32)
Y_train = np.array(Y_train, dtype=np.float32)
X = tf.placeholder(tf.float32, [None, 2])
Y = tf.placeholder(tf.float32, [None, 1])
₩ = tf.Variable(tf.random_normal([2, 1]), name='weight')
b = tf.Variable(tf.random_normal([1]), name='bias')
hypothesis = tf.sigmoid(tf.matmul(X, W) + b)
cost = -tf.reduce\_mean(Y + tf.log(hypothesis) + (1 - Y) + tf.log(1 - hypothesis))
train = tf.train.GradientDescentOptimizer(learning_rate=learning_rate).minimize(cost)
predicted = tf.cast(hypothesis > 0.5, dtype=tf.float32)
accuracy = tf.reduce_mean(tf.cast(tf.equal(predicted, Y), dtype=tf.float32))
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    for step in range(10001):
        sess.run(train, feed_dict={X: X_train, Y: Y_train})
        if step % 100 == 0:
            print(step, sess.run(cost, feed_dict=
            {X: X_train, Y: Y_train}), sess.run(#))
    h, c, a = sess.run([hypothesis, predicted, accuracy], feed_dict={X: X_train, Y: Y_train})
    print("\mmHypothesis: ", h, "\mmCorrect: ", c, "\mmAccuracy: ", a)
```


Tensorflow 1.0 and Tensorflow 2.0

#Tensorflow2 Keras Xor import numpy as np import tensorflow as tf

```
X_train = np.array([[0, 0], [0, 1], [1, 0], [1, 1]], 'float32')
Y_train = np.array([[0], [1], [1], [0]], 'float32')
```

```
mode1=tf.keras.Sequential()
mode1.add(tf.keras.layers.Dense(4, imput_dim=2))
mode1.add(tf.keras.layers.Activation('sigmoid'))
mode1.add(tf.keras.layers.Dense(1))
mode1.add(tf.keras.layers.Activation('sigmoid'))
```

```
sgd=tf.keras.optimizers.SGD(lr=0.1)
model.compile(loss='binary_crossentropy', optimizer=sgd)
model.fit(X_train, Y_train, batch_size=1, epochs=2000)
```

```
_predict = node1.predict_proba(X_train)
print('predict', _predict)
print('result=', np.array(np.array(_predict) > 0.5, np.int))
```


https://www.tensorflow.org/tutorials

Life 🗎 CS and Job Relate	ed 🗎 Schools	3		
1 TensorFlow	Install	Learn - API - More -	Q Search	⊕ English ▼ GitHub
≂ Filter		For beginners		
TensorFlow tutorials		The best place to start is with the	user-friendly Keras sequential API. B	uild models by plugging together
Quickstart for beginners Quickstart for experts		building blocks. After these tutoria		and models by plagging together
BEGINNER				
ML basics with Keras	~	Beginner quickstart	Keras basics	Load data
Load and preprocess data	~	This "Hello, World!" notebook shows the Keras	This notebook collection demonstrates basic	These tutorials use tf.data to load various
ADVANCED		Sequential API and model.fit.	machine learning tasks using Keras.	data formats and build input pipelines.
Customization	~			
Distributed training	~	For experts		
Vision	~	The Keras functional and subclassing APIs provide a define-by-run interface for customization and advanced research. Build your model, then write the forward and backward pass. Create custom layers,		
Text	~	activations, and training loops.	del, then write the forward and back	ward pass. Create custom layers,
Audio	~			
Structured data	~	Advanced quickstart	Customization	Distributed training
Generative	~	This "Hello, World!" notebook uses the Keras	This notebook collection shows how to build custom	Distribute your model training across multiple
Model optimization	~	subclassing API and a custom training loop.	layers and training loops in TensorFlow	GPUs, multiple machines or TPUs.

https://www.tensorflow.org/tutorials/quickstart/beginner

C C C Collaboration of the Apache License, Version 2.0 (the "License"); Share C C Copyright 2019 The TensorFlow Authors. C Copyright 2019 The TensorFlow C Connect C Copyright 2019 The TensorFlow C Connect C Copyright 2019 The TensorFlow C Connect C C Copyright C C Connect C C Copyright C C Connect C C Copyright C C Connect C C C C Copyright C C Copyright C C C Copyright C C C C C C C C C C C C C C C C C C C	e e beginner.ipynb - Colaboratory x	+ ~
Copyright 2019 The TensorFlow Authors. Licensed under the Apache License, Licensed under the Apache License, TensorFlow 2 quickstart for beginners Set up TensorFlow Load a dataset Build a machine learning model Train and evaluate your model Conclusion Section Conclusion Section Conclusion Con	\leftrightarrow \rightarrow C \bigtriangleup \cong colab.research.google.co	um/github/tensorflow/doc 🔤 👌 🖈 🚺 🗊 🗊 🖬 🚍 🙆 💺 🔺 🎴 🗟 🏚 🗐 🗐 🔅
File Edit View Insert Runtime Tools Help Convertion Image: State	Life 🗎 CS and Job Related 🗎 Schools	
 Table of contents Table of contents Copyright 2019 The TensorFlow Authors. Licensed under the Apache License; Version 2.0 (the "License"); TensorFlow 2 quickstart for beginners Set up TensorFlow Load a dataset Build a machine learning model Train and evaluate your model Conclusion Section TensorFlow 2 duickstart for beginners Show code TensorFlow 2 duickstart for beginners Show code TensorFlow 2 duickstart for beginners Licensed under the Apache License, Version 2.0 (the "License"); TensorFlow 2 quickstart for beginners TensorFlow 2 quickstart for beginners TensorFlow 2 quickstart for beginners Load a prebuilt dataset. Build a neural network machine learning model that classifies images. Train this neural network machine learning model that classifies images. This tutorial is a <u>Google Colaboratory</u> notebook. Python programs are run directly in the browser-a great way to learn and use TensorFlow. To follow this tutorial, run the notebook in Google Colab by clicking the button at the top of this page. In Colab, connect to a Python runtime: At the top-right of the menu bar, select <i>CONNECT</i>. To run all the code in the notebook, select Runtime > Run all. To run the code cells one at a time, hover over each cell and select the Run cell con. 		
 Copyright 2019 The TensorFlow Authors. Licensed under the Apache License, Version 2.0 (the "License"); TensorFlow 2 quickstart for beginners Set up TensorFlow Load a dataset Build a machine learning model Train and evaluate your model Conclusion Section TensorFlow 2 quickstart for beginners Section TensorFlow 2 quickstart for beginners TensorFlow 2 quickstart for beginners TensorFlow 2 quick start for beginners TensorFlow 2 quickstart for beginners This short introduction uses Keras to: Load a prebuilt dataset. Build a neural network Evaluate the accuracy of the model. This tutorial is a Google Colaboratory notebook. Python programs are run directly in the browser-a great way to learn and use TensorFlow. To follow this tutorial, run the notebook in Google Colab by clicking the button at the top of this page. In Colab, connect to a Python runtime: At the top-right of the menu bar, select CONNECT. To run all the code in the notebook, select Runtime > Run all. To run the code cells one at a time, hover over each cell and select the Run cell icon. 	\equiv Table of contents \Box $ imes$	+ Code + Text & Copy to Drive Connect - P Editing A
Set up TensorFlow Load a dataset Build a machine learning model Train and evaluate your model Conclusion ■ Section ■ Section ■ Section ■ TensorFlow 2 quickstart for beginners This short introduction uses Keras to: 1. Load a prebuilt dataset. 2. Build a neural network machine learning model that classifies images. 3. Train this neural network. 4. Evaluate the accuracy of the model. This tutorial is a Google Colaboratory notebook. Python programs are run directly in the browser-a great way to learn and use TensorFlow. To follow this tutorial, run the notebook in Google Colab by clicking the button at the top of this page. 1. In Colab, connect to a Python runtime: At the top-right of the menu bar, select CONNECT. 3. To run all the code in the notebook, select Runtime > Run all. To run the code cells one at a time, hover over each cell and select the Run cell icon.	 Licensed under the Apache License, Version 2.0 (the "License"); TensorFlow 2 quickstart for beginners Set up TensorFlow Load a dataset Build a machine learning model Train and evaluate your model 	Copyright 2019 The TensorFlow Authors.
 Train and evaluate your model Conclusion Section TensorFlow 2 quickstart for beginners This short introduction uses Keras to: Load a prebuilt dataset. Build a neural network machine learning model that classifies images. Train this neural network. Evaluate the accuracy of the model. This tutorial is a Google Colaboratory notebook. Python programs are run directly in the browser-a great way to learn and use TensorFlow. To follow this tutorial, run the notebook in Google Colab by clicking the button at the top of this page. In Colab, connect to a Python runtime: At the top-right of the menu bar, select CONNECT. To run all the code in the notebook, select Runtime > Run all. To run the code cells one at a time, hover over each cell and select the Run cell icon. 		
 View on Tensorflow.org New source on Gittub Download notebook This short introduction uses Keras to: Load a prebuilt dataset. Build a neural network machine learning model that classifies images. Train this neural network. Evaluate the accuracy of the model. This tutorial is a Google Colaboratory notebook. Python programs are run directly in the browser—a great way to learn and use TensorFlow. To follow this tutorial, run the notebook in Google Colab by clicking the button at the top of this page. In Colab, connect to a Python runtime: At the top-right of the menu bar, select CONNECT. To run all the code in the notebook, select Runtime > Run all. To run the code cells one at a time, hover over each cell and select the Run cell icon. 		 TensorFlow 2 quickstart for beginners
 1. Load a prebuilt dataset. 2. Build a neural network machine learning model that classifies images. 3. Train this neural network. 4. Evaluate the accuracy of the model. This tutorial is a <u>Google Colaboratory</u> notebook. Python programs are run directly in the browser—a great way to learn and use TensorFlow. To follow this tutorial, run the notebook in Google Colab by clicking the button at the top of this page. In Colab, connect to a Python runtime: At the top-right of the menu bar, select <i>CONNECT</i>. To run all the code in the notebook, select Runtime > Run all. To run the code cells one at a time, hover over each cell and select the Run cell icon. 	Section	Truew on TensorFloworg
 way to learn and use TensorFlow. To follow this tutorial, run the notebook in Google Colab by clicking the button at the top of this page. 1. In Colab, connect to a Python runtime: At the top-right of the menu bar, select CONNECT. 2. To run all the code in the notebook, select Runtime > Run all. To run the code cells one at a time, hover over each cell and select the Run cell icon. 		 Load a prebuilt dataset. Build a neural network machine learning model that classifies images. Train this neural network.
2. To run all the code in the notebook, select Runtime > Run all. To run the code cells one at a time, hover over each cell and select the Run cell icon.		way to learn and use TensorFlow. To follow this tutorial, run the notebook in Google Colab by clicking the
		2. To run all the code in the notebook, select Runtime > Run all. To run the code cells one at a time,

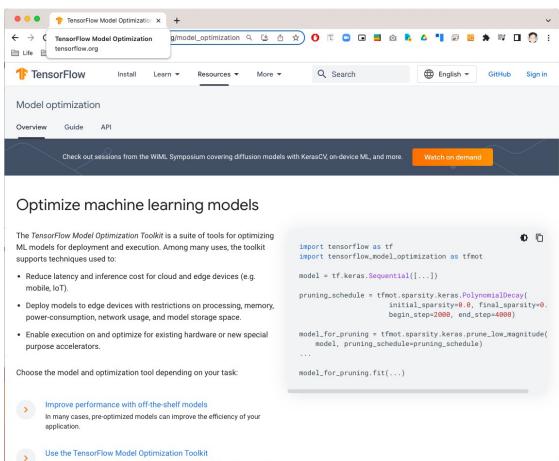
https://colab.research.google.com/github/tensorflow/docs/ blob/master/site/en/tutorials/keras/classification.ipynb

C C C C C C C C C C C C	• • • co classification.ipynb - Colaborat x	+ *				
Co Calassificationsphb File Edit View Insert Runtime Tools Help Table of contents Copyright 2018 The TensorFlow Autors. Licensed under the Apache License, Licensed under the Apache License, Licensed under the Apache License, MIT License Basic classification: Classify Images of Basic classifications Preprocess the data Build the model Frain the model<	\leftrightarrow \rightarrow C \bigtriangleup (a) colab.research.google.c	om/github/tensorflow/doc 🔤 🖄 🛧 🜔 🗉 🖬 🖬 🙆 📭 🚔 🖄 🧐 🗄				
File Edit View Insert Runtime Tools Help Table of contents Copyright 2018 The TensorFlow Authors. Licensed under the Apache License, Version 2.0 (the "License"); MIT License Basic classification: Classify Images of clothing Import the Fashion MNIST dataset Explore the data Preprocess the data Build the model Evaluate accuracy Make predictions Verify predictions Use the trained model Exclon Complete trains a neural network model to classify images of clothing, like sneakers and shirts. It's okay if you don't understand all the details; this is a fast-paced overview of a complete TensorFlow program with the details explained as you go. Complete TensorFlow and tf.keras import tensorFlow as tf # Endition model File Edit View of Editions Use the trained model Section Complete TensorFlow and tf.keras import tensorFlow as tf # Enditions Work predictions Use the trained model File Section Complete TensorFlow and tf.keras import tensorFlow as tf # Enditions It Helper Libbraries import matple/Distances Import matple/Distances Import matple/Distances Enditions Endition	Life CS and Job Related Schools					
 Table of contents Table of contents Table of contents Table of contents Copyright 2018 The TensorFlow Authors. Licensed under the Apache License, Version 2.0 (the "License"); Show code MIT License Show code Show code Show code Show code Basic classification: Classify images of clothing Compile the model Feed the model Evaluate accuracy Make predictions Use the trained model Section Section Copyright 2018 The TensorFlow and tf.keras import antaport lib.pyplot as plt 						
 Copyright 2018 The TensorFlow Authors. Completions Show code MIT License Static classification: Classify images of clothing, like sneakers and shirts. It's okay if you don't understand all the details; this is a fast-paced overview of a complete TensorFlow program with the details explained as you go. This guide uses fikeras, a high-level API to build and train models in Tenso	\equiv Table of contents \Box $ imes$	+ Code + Text & Copy to Drive Connect 🗸 🌶 Editing A				
 (x) Version 2.0 (the "License"); MT License MT License Assic classification: Classify images of clothing Import the Fashion MNIST dataset Explore the data Preprocess the data Build the model Set up the layers Compile the model Feed the model Evaluate accuracy Make predictions Verify predictions Use the trained model Section Compile trains a neural network model to classify images of clothing, like sneakers and shirts. It's okay if you don't understand all the details; this is a fast-paced overview of a complete TensorFlow program with the details explained as you go. This guide uses <u>fikeras</u>, a high-level API to build and train models in TensorFlow. f TensorFlow and <u>fikeras</u> import manpy as pp import manpy as pp 						
Basic classification: Classify images of clothing. Import the Fashion MNIST dataset Explore the data MIT License Build the model Show code Set up the layers Show code Compile the model Show code Fred the model Show code Fred the model Evaluate accuracy Make predictions Verify predictions Use the trained model Stou understand all the details; this is a fast-paced overview of a complete TensorFlow program with the details explained as you go. This guide trains a neural network model to classify images of clothing, like sneakers and shirts. It's okay if you don't understand all the details; this is a fast-paced overview of a complete TensorFlow program with the details explained as you go. This guide trains a neural network model to classify images of clothing, like sneakers and shirts. It's okay if you don't understand all the details; this is a fast-paced overview of a complete TensorFlow program with the details explained as you go. This guide trains a neural network model to classify images of clothing, like sneakers and shirts. It's okay if you don't understand all the details; this is a fast-paced overview of a complete TensorFlow program with the details explained as you go. It guide trains a neural network model to classify images of clothing, like sneakers and shirts. It's okay if you don't understand all the details; this is a fast-paced overview of a complete TensorFlow program with the details explained as you go.	{ <i>x</i> } Version 2.0 (the "License");	Licensed under the Anache License Version 2.0 (the "License");				
 Kurden en deda Preprocess the data Build the model Set up the layers Compile the model Train the model Feed the model Evaluate accuracy Make predictions Use the trained model Exection Compile the model Feed the model Evaluate accuracy Make predictions Use the trained model If the specified ward the details; this is a fast-paced overview of a complete TensorFlow program with the details; this is a fast-paced overview of a complete TensorFlow program with the details explained as you go. This guide trains a neural network model to classify images of clothing, like sneakers and shirts. It's okay if you don't understand all the details; this is a fast-paced overview of a complete TensorFlow program with the details explained as you go. This guide trains a neural network model to build and train models in TensorFlow program with the details explained as you go. If tensorFlow and tf.keras import tensorFlow as tf import numpy as np import numpy as np import matplotlib.pyplot as plt 	Basic classification: Classify images of	Show code				
Preprocess the data Build the model Set up the layers Compile the model Feed the model Feed the model Evaluate accuracy Make predictions Use the trained model Is Section	Import the Fashion MNIST dataset					
Build the model Ste up the layers Compile the model Feed the model Feed the model Evaluate accuracy Make predictions Verify predictions Use the trained model Evaluate accuracy Section This guide trains a neural network model to classify images of clothing, like sneakers and shirts. It's okay if you don't understand all the details; this is a fast-paced overview of a complete TensorFlow program with the details explained as you go. Image: Section This guide uses tf.keras, a high-level API to build and train models in TensorFlow. Image: Provide the model Image: Provide the model Image: Provide the model Image: Provide trains a neural network model to classify images of clothing, like sneakers and shirts. It's okay if you don't understand all the details; this is a fast-paced overview of a complete TensorFlow program with the details explained as you go. Image: Provide the model Image: Provide the model Image: Provide t	Explore the data	 MIT License 				
Build the model Set up the layers Compile the model Train the model Feed the model Evaluate accuracy Make predictions Verify predictions Use the trained model This guide trains a neural network model to classify images of clothing, like sneakers and shirts. It's okay if you don't understand all the details; this is a fast-paced overview of a complete TensorFlow program with the details explained as you go. Image: Section This guide uses tf.keras, a high-level API to build and train models in TensorFlow. () # TensorFlow and tf.keras import tensorFlow as tf # Belper libraries import matplotlib.pyplot as plt	Preprocess the data	Show code				
Compile the model Train the model Feed the model Evaluate accuracy Make predictions Use the trained model ■ Section	Build the model					
Train the model Feed the model Evaluate accuracy Make predictions Verify predictions Use the trained model Is Section This guide trains a neural network model to classify images of clothing, like sneakers and shirts. It's okay if you don't understand all the details; this is a fast-paced overview of a complete TensorFlow program with the details explained as you go. Is Section This guide uses <u>ff.keras</u> , a high-level API to build and train models in TensorFlow. (] # TensorFlow and tf.keras import tensorflow as tf # Belper libraries import matpletlib.pyplot as plt	Set up the layers					
Feed the model Evaluate accuracy Make predictions Win in Google Colab Cview source on GitHub Lownload notebook Werfy predictions Use the trained model This guide trains a neural network model to classify images of clothing, like sneakers and shirts. It's okay if you don't understand all the details; this is a fast-paced overview of a complete TensorFlow program with the details explained as you go. Image: Section This guide uses tf.keras, a high-level API to build and train models in TensorFlow. Image: Provide the tensorFlow and tf.keras import tensorFlow as tf Image: Provide the tensorFlow as mp Import matpletlib.pyplot as plt	Compile the model	 Basic classification: Classify images of clothing 				
Evaluate accuracy Make predictions Weiny predictions Weiny predictions Use the trained model This guide trains a neural network model to classify images of clothing, like sneakers and shirts. It's okay if you don't understand all the details; this is a fast-paced overview of a complete TensorFlow program with the details explained as you go. Image: Section This guide uses <u>ff.keras</u> , a high-level API to build and train models in TensorFlow. Image: Provide the trained model # TensorFlow and tf.keras Image: Provide the trained model # TensorFlow and tf.keras Image: Provide the trained model # TensorFlow as tf Image: Provide the trained model # Helper libraries Image: Provide the trained model # Helper libraries Image: Provide the trained model # mort tansorflow as tf Image: Provide the trained model # mort tansorflow as pp Image: Provide the trained model # mort tansorflow as pp Image: Provide the trained model # mort tansorflow as pp Image: Provide the trained model # mort tansorflow as pp Image: Provide the trained model # mort tansorflow as pp Image: Provide the trained model # mort tansorflow as pp Image: Provide the trained model # mort tansorflow as pp Image:	Train the model					
Evaluate accuracy Make predictions Verify predictions This guide trains a neural network model to classify images of clothing, like sneakers and shirts. It's okay if you don't understand all the details; this is a fast-paced overview of a complete TensorFlow program with the details explained as you go. Image: Section This guide uses tf.keras, a high-level API to build and train models in TensorFlow. () # TensorFlow and tf.keras import tensorFlow as tf # Helper libraries import numpy as np import matplotlib.pyplot as plt	Feed the model					
Verify predictions Ihis guide trains a neural network model to classify images of clothing, like sneakers and shirts. It's okay if you don't understand all the details; this is a fast-paced overview of a complete TensorFlow program with the details explained as you go. Image: Section This guide uses <u>tf.keras</u> , a high-level API to build and train models in TensorFlow. Image: Section [] # TensorFlow and tf.keras Image: Section [] # TensorFlow and tf.keras Image: Section [] # TensorFlow as tf	Evaluate accuracy	View on TensorFlow.org				
Verify predictions if you don't understand all the details; this is a fast-paced overview of a complete TensorFlow program with the details explained as you go. Image: Section This guide uses tf.keras, a high-level API to build and train models in TensorFlow. [] # TensorFlow and tf.keras import tensorFlow as tf # Helper libraries import numpy as np import matplotlib.pyplot as plt import as plt	Make predictions	This guide trains a neural network model to classify images of clothing, like sneakers and shirts. It's okay				
Image: Section This guide uses <u>ff.keras</u> , a high-level API to build and train models in TensorFlow. Image: Section [] # TensorFlow and tf.keras import tensorflow as tf Image: Section # Helper libraries import numpy as np import matplotlib.pyplot as plt	Verify predictions					
<pre>[] # TensorFlow and tf.keras import tensorflow as tf # Helper libraries import numpy as np import matplotlib.pyplot as plt</pre>	Use the trained model	with the details explained as you go.				
<pre>import tensorflow as tf # Helper libraries import numpy as np import matplotlib.pyplot as plt</pre>	Section	This guide uses tf.keras, a high-level API to build and train models in TensorFlow.				
# Helper libraries import numpy as np import matplotlib.pyplot as plt						
import matplotlib.pyplot as plt	<>	# Helper libraries				

Tensorflow hub and model garden

- Tensorflow Hub (<u>https://www.tensorflow.org/hub</u>)
 - A repository of trained machine learning models ready for fine-tuning and deployable anywhere
 - Reuse trained models like BERT and Faster R-CNN with just a few lines of code
- Model garden (<u>https://www.tensorflow.org/guide/model_garden</u>)
 - Provides implementations of many state-of-the-art machine learning (ML) models for vision and natural language processing (NLP)
 - Provides workflow tools to let you quickly configure and run those models on standard datasets

Tensorflow model optimization toolkit

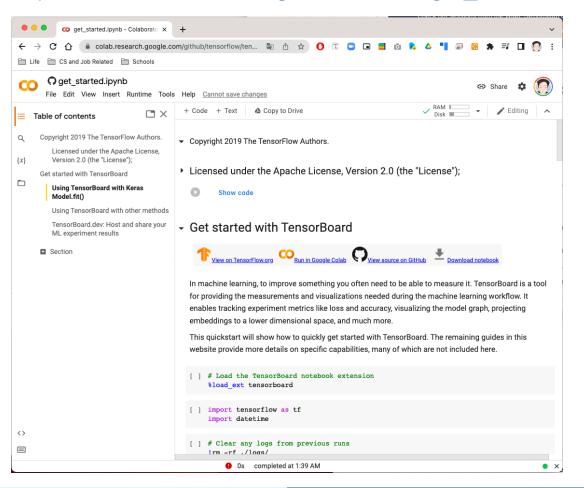

Optimize machine learning models

- A suite of tools for optimizing ML models for deployment and execution
- The toolkit supports techniques used to:
 - Reduce latency and inference cost for cloud and edge devices (e.g., mobile, IoT)
 - Deploy models to edge devices with restrictions on processing, memory, powerconsumption, network usage, and model storage space
 - Enable execution on and optimize for existing hardware or new special purpose accelerators
- Two famous techniques
 - Weight pruning
 - Quantization
 - Weight clustering

Tensorflow model optimization toolkit

https://www.tensorflow.org/model optimization

Tensorboard


Tensorboard (<u>https://www.tensorflow.org/tensorboard</u>)

- provides the visualization and tooling needed for machine learning experimentation:
 - Tracking and visualizing metrics such as loss and accuracy
 - Visualizing the model graph (ops and layers)
 - Viewing histograms of weights, biases, or other tensors as they change over time
 - Projecting embeddings to a lower dimensional space
 - Displaying images, text, and audio data
 - Profiling Tensorflow programs
 - And much more

Tensorboard

https://www.tensorflow.org/tensorboard/get_started

Summary

Summary

• Summary

- Websites and Youtube channels for Google techs and lives
 - Provides a lot of useful information for Google and google techs
- Programming language style guides and Googletest framework
 - Following the style guide and use a Googletest framework (only for C++) will dramatically improve the project quality
- Machine learning related tools
 - Colab: A web-based and highly readable Python programming IDE
 - Tensorflow and Keras: A tool to build machine learning models
 - Tensorflow model optimization toolkit: A tool to optimize machine learning models
 - Tensorflow hub and model garden: Pre-built machine learning models
 - Tensorboard: A tool to experiment machine learning models

