
© 2023 Jieung Kim, All rights reserved

JIEUNG KIM
jieungkim@inha.ac.kr

Google techs for developers

© 2023 Jieung Kim, All rights reserved

Contents
• Who am I?
• Websites and Youtube channels for Google techs and lives
• Google technologies: Programming language style guides
• Google technologies: Googletest framework
• Google technologies: Machine learning related tools

• Colab
• Tensorflow and Keras
• Tensorflow model optimization toolkit
• Tensorflow hub and model garden
• Tensorboard

• Summary

© 2023 Jieung Kim, All rights reserved

Who am I?

© 2023 Jieung Kim, All rights reserved

Who am I?
• Who am I? – https://jieung.kim

• I am an assistant professor in Computer Engineering Department, College of Software and
Convergence, Inha University (Incheon, South Korea)

• Before that, I was a research engineer at Google
• Worked on machine learning model optimizations (2022.03~2022.08)
• Worked on pKVM formal verification (2020.05~2022.02)

• pKVM: a new software stack in the Android ecosystem to increase security
• Formal verification: the strongest method to show the correctness and security

properties of software with using mathematical and computational logic methods
• Even before that, I was at Yale University as a graduate student, worked on other formal

verification projects
• Verify OS & hypervisor based on xv6 (CertiKOS)
• Provide unified and verified APIs for distributed protocol (ADO)

• I received my M.S. and B.S. from KAIST and SKKU (South Korea), respectively

https://jieung.kim/

© 2023 Jieung Kim, All rights reserved

Websites and Youtube channels
for Google techs and lives

© 2023 Jieung Kim, All rights reserved

Google developers
https://developers.google.com/

https://developers.google.com/

© 2023 Jieung Kim, All rights reserved

Tech dev guide
https://techdevguide.withgoogle.com/

https://techdevguide.withgoogle.com/

© 2023 Jieung Kim, All rights reserved

Youtube, Life at Google
https://www.youtube.com/lifeatgoogle

https://www.youtube.com/lifeatgoogle

© 2023 Jieung Kim, All rights reserved

Youtube, Google Developers
https://www.youtube.com/GoogleDevelopers

https://www.youtube.com/GoogleDevelopers

© 2023 Jieung Kim, All rights reserved

Google repository at Github
https://github.com/google

https://github.com/google

© 2023 Jieung Kim, All rights reserved

Google style guide
https://google.github.io/styleguide/

https://google.github.io/styleguide/

© 2023 Jieung Kim, All rights reserved

Googletest framework
https://github.com/google/googletest

https://github.com/google/googletest

© 2023 Jieung Kim, All rights reserved

Tensorflow
https://www.tensorflow.org/

https://www.tensorflow.org/

© 2023 Jieung Kim, All rights reserved

Google technologies:
Programming language style

guides

© 2023 Jieung Kim, All rights reserved

Programming language style guides
• Programming language style guides

• A guide of programming conventions, style, and best practices for a team or project
• Following the guides in the development make team’s code more consistent and readable

• Consistent code is easier to read and understand making it faster to add new features
• Code review process is usually check whether the code follows style guides

© 2023 Jieung Kim, All rights reserved

Code review
• Code review

• Careful, systematic study of source code by people who are not the original author of the code

• Purpose of code review
• Can catch many bugs, design flaws early
• > 1 person has seen every piece of code

• Insurance against author’s disappearance
• Forcing function for documentation and code improvements

• Authors to articulate their decisions
• Authors participate in the discovery of flaws
• Prospect of someone reviewing your code raises quality threshold

• Inexperienced personnel get hands-on experience without hurting code quality
• Pairing them up with experienced developers
• Can learn by being a reviewer as well

© 2023 Jieung Kim, All rights reserved

Code review
• Purpose of code review - by numbers

• From Steve McConnel’s Code Complete
• Average defect detection rates

• Unit testing: 25%
• Function testing: 35%
• Integration testing: 45%
• Design and code inspections (reviews): 55% and 60%

• 11 programs developed by the same group of people
• First 5 without reviews: average 4.5 errors per 100 lines of code
• Remaining 6 with reviews: average 0.82 errors per 100 lines of code
• Errors reduced by > 80%

• After AT&T introduced reviews, 14% increase in productivity and a 90% decrease in defects

https://en.wikipedia.org/wiki/Code_Complete

© 2023 Jieung Kim, All rights reserved

© 2023 Jieung Kim, All rights reserved

© 2023 Jieung Kim, All rights reserved

Examples
• Some common guidelines in multiple C++ style guide

• The rule of the three: If a class defines one (or more) of the following, it should explicitly define
all three, which are 1) destructor, 2) copy constructor, 3) copy assignment operator

• Do not use #define unless you have to use it
• Try to use const member functions and variables
• Set up the criteria on class, function, field, and variable names
• Locate functions in proper classes
• Try to use initializer list
• Use iteration over STL containers
• …

© 2023 Jieung Kim, All rights reserved

#define Fresh 1
#define Sophomore 2
#define Junior 3
#define Senior 4

class Student {
public:
Student(int id, int year) {

student_id = id;
student_year = year;

};

~Student();

int GetStudentID() { return student_id; }
int get_student_year() { return student_year; }

private:
int student_id;
int student_year;

};

bool FindStudent(int id, std::vector<Student> students) {
for (int i = 0; i < students.size(); i++) {

if (students[i].GetStudentID() == id) {
return true;

}
}
return false;

}

Do not use #define

Violate the rule of
the three

Inconsistency in
function names

Fields are not distinguishable from local variables

Iterator is not used

References should be used

Initializer list is not used

© 2023 Jieung Kim, All rights reserved

class Student {
public:
enum StudentYear { FRESH = 1, Sophomore, Junior, Senior };

Student(const int id, const StudentYear year) :
id_(id), year_(year) {};

Student(const Student& student) :
id_(student.id_), year_(student.year_) {};

Student& operator=(const Student& student) {
if (this != &student) {

*this = Student(student);
}
return *this;

};
~Student();

int GetId() { return id_; }
int GetYear() { return year_; }

bool FindStudent(const int id,
const std::vector<Student>& students) const {
for (const auto& student : students) {

if (student.id_ == id) {
return true;

}
}
return false;

}

private:
const int id_;
StudentYear year_;

};

© 2023 Jieung Kim, All rights reserved

Google technologies:
GoogleTest Framework

© 2023 Jieung Kim, All rights reserved

Software testing
• Software testing

• Evaluation of the software against requirements gathered from users and system specifications
• Does testing really work?

• "measuring over 20 projects: if you have a large number of unit tests your code will be an order
of magnitude (x10) less complex.“

• Controlled study results:
• “..quality increased linearly with the number of programmer tests...”
• “..test-first students on average wrote more tests and, in turn, students who wrote more

tests tended to be more productive...”

http://agilepainrelief.com/notesfromatooluser/2008/11/misconceptions-with-test-driven-development.html
http://collaboration.csc.ncsu.edu/laurie/Papers/TDDpaperv8.pdf

http://agilepainrelief.com/notesfromatooluser/2008/11/misconceptions-with-test-driven-development.html
http://collaboration.csc.ncsu.edu/laurie/Papers/TDDpaperv8.pdf

© 2023 Jieung Kim, All rights reserved

Software testing

Code

Design

Requirements

System Engineering

Unit Testing

Integration Testing

Validation Testing

System Testing

Abs
tra

ct
to

co
nc

ret
e

Narr
ow

 to

Broa
de

r s
co

pe

25

© 2023 Jieung Kim, All rights reserved

Software testing
• Unit testing frameworks and libraries

• Java
• NUnit, Junit, TestNG, Mockito, and PHPUnit

• Python
• Robot, PyTest, Unittest, DocTest, Nose2, and Testify

• C/C++
• Googletest, Boot Test Library, QA Systems Cantata, Parasoft C/C++ test, Microsoft Visual

Studio, Cppunit, Catch, Bandit, and CppUTest
• JavaScript

• Jest, Mocah, Storybook, Jasmine, Cypress, Puppeteer, Testing Library, and WebdriverIO

© 2023 Jieung Kim, All rights reserved

Googletest framework
• Googletest framework

• A unit testing library for the C++ programming language.
• Repository

• http://code.google.com/p/googletest/
• Projects using Google Test

• Android open source project operating system
• Chromium projects (behind the Chrome browser, Edge browser, and Chrome OS)
• LLVM compiler
• Protocol Buffers (Google’s data interchange format)
• OpenCV computer vision library
• Several internal C++ projects at Google

• Study materials
• README file: https://github.com/google/googletest/blob/master/README.md
• Googletest user’s guide: https://google.github.io/googletest/
• Whittaker, James (2012). How Google Tests Software. Boston, Massachusetts: Pearson

Education. ISBN 0-321-80302-7

http://code.google.com/p/googletest/
https://github.com/google/googletest/blob/master/README.md
https://google.github.io/googletest/
https://www.amazon.com/Google-Tests-Software-James-Whittaker/dp/0321803027

© 2023 Jieung Kim, All rights reserved

#include "gtest/gtest.h"
TEST (SquareRootTest, PositiveNos) {

EXPECT_EQ (18.0, square-root (324.0));
EXPECT_EQ (25.4, square-root (645.16));
EXPECT_EQ (50.3321, square-root (2533.310224));

}
TEST (SquareRootTest, ZeroAndNegativeNos) {

ASSERT_EQ (0.0, square-root (0.0));
ASSERT_EQ (-1, square-root (-22.0));

}

Create tests

double square-root (const double);

• Creating a basic test
• Target code: prototype for square-root

• Test case with Googletest

© 2023 Jieung Kim, All rights reserved

#include "gtest/gtest.h"
TEST (SquareRootTest, PositiveNos) {

EXPECT_EQ (18.0, square-root (324.0));
EXPECT_EQ (25.4, square-root (645.16));
EXPECT_EQ (50.3321, square-root (2533.310224));

}
TEST (SquareRootTest, ZeroAndNegativeNos) {

ASSERT_EQ (0.0, square-root (0.0));
ASSERT_EQ (-1, square-root (-22.0));

}

Create tests

Test hierarchy name Unit test namePredefined macro in gtest.h

Predefined macros that
checks result of
square-root

double square-root (const double);

© 2023 Jieung Kim, All rights reserved

Check results
• Basic assertions

Fatal assertion Nonfatal assertion Verifies
ASSERT_TRUE(condtion); EXPECT_TRUE(condtion); Condition is true

ASSERT_FALSE(condition); EXPECT_FALSE(condition); Condition is false

© 2023 Jieung Kim, All rights reserved

Check results
• Binary comparison

Fatal assertion Nonfatal assertion Verifies
ASSERT_EQ(expected,

actual);
EXPECTED_EQ(expected,

actual);
expected == actual

ASSERT_NE(val1, val2); EXPECT_NE(val1, val2); val1 != val2

ASSERT_LT(val1, val2); EXPECT_LT(val1, val2); val1 < val2

ASSERT_LE(val1, val2); EXPECT_LE(val1, val2); val1 <= val2

ASSERT_GT(val1, val2); EXPECT_GT(val1, val2); val1 > val2

ASSERT_GE(val1, val2); EXPECT_GE(val1, val2); val1 >= val2

© 2023 Jieung Kim, All rights reserved

Run tests

int main(int argc, char ∗∗argv) {
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();

}

• Initialize the framework
• Must be called before RUN_ALL_TESTS

• Must be called only once
• Multiple calls to it conflicts some features of the framework

• Automatically detects and runs all test tests defined using the TEST macro

© 2023 Jieung Kim, All rights reserved

Run tests
Running main() from user_main.cpp
[==========] Running 2 tests from 1 test case.
[----------] Global test environment set-up.
[----------] 2 tests from SquareRootTest
[RUN] SquareRootTest.PositiveNos
..\user_sqrt.cpp(6862): error: Value of: sqrt (2533.310224)
Actual: 50.332

Expected: 50.3321
[FAILED] SquareRootTest.PositiveNos (9 ms)
[RUN] SquareRootTest.ZeroAndNegativeNos
[OK] SquareRootTest.ZeroAndNegativeNos (0 ms)
[----------] 2 tests from SquareRootTest (0 ms total)

[----------] Global test environment tear-down
[==========] 2 tests from 1 test case ran. (10 ms total)
[PASSED] 1 test.
[FAILED] 1 test, listed below:
[FAILED] SquareRootTest.PositiveNos

1 FAILED TEST

© 2023 Jieung Kim, All rights reserved

Google technologies:
Machine learning related tools

© 2023 Jieung Kim, All rights reserved

Machine learning related tools
• Machine learning related tools

• Colab: Allows you to write and execute Python in your browser, with zero configuration
required, access to GPUs free of charge, and easy sharing

• Tensorflow and Keras
• Tensorflow : A free and open-source software library for machine learning and artificial

intelligence
• Keras (an interface for the Tensorflow library): An open-source software library that

provides a Python interface for artificial neural networks
• Tensorflow hub and model garden: Pre-built tensorflow models
• Tensorflow model optimization toolkit: A suite of tools for optimizing ML models for deployment

and execution
• Tensorboard: Provides the visualization and tooling needed for machine learning

experimentation

© 2023 Jieung Kim, All rights reserved

Colab
• Colab

• A project from Google Research, a free, Jupyter based environment
• It allows us to create Jupyter programming notebooks to write and execute Python in a web

browser
• It also supports other Python-based third-party tools and machine learning frameworks

such as Pandas, PyTorch, Tensorflow, Keras, Monk, OpenCV, and others
• Google provides the use of free GPU for your Colab notebooks

© 2023 Jieung Kim, All rights reserved

Colab
• Introduction to Colab

© 2023 Jieung Kim, All rights reserved

Colab
• Welcome To Colab (https://colab.research.google.com/)

https://colab.research.google.com/

© 2023 Jieung Kim, All rights reserved

Tensorflow and Keras
• Deep learning frameworks

© 2023 Jieung Kim, All rights reserved

Tensorflow and Keras
• Deep learning frameworks

• Tools for defining static or dynamic general-purpose computational graphs
• Seamless CPU / GPU usage
• Python / numpy or R interfaces instead of C, C++, CUDA or HIP
• Open source
• Tensorflow, PyTorch, etc. +

x +

x y

x

2

Variable

Operation

Constant

© 2023 Jieung Kim, All rights reserved

Tensorflow and Keras
• Tensorflow (https://www.tensorflow.org/)

• Deep learning frameworks from Google (The initial version was the name with DistBelief)
• It can be used in a wide variety of programming languages (e.g., Python, JavaScript, C++, and

Java)
• Companies using Tensorflow

• Google : Translate, Google Brain’s Magenta
• DeepMind : WaveNet Text to Speech

https://www.tensorflow.org/

© 2023 Jieung Kim, All rights reserved

Tensorflow and Keras
• Keras

• A high-level neural networks API
• A frontend API for Tensorflow 2.0

• https://keras.io/
• https://www.tensorflow.org/guide/keras

• It dramatically increase the usability of Tensorflow

Keras API

TensorFlow / Theano / CNTK / …

CUDA / cuDNN BLAS, Eigen

GPU CPU

https://keras.io/
https://www.tensorflow.org/guide/keras

© 2023 Jieung Kim, All rights reserved

Tensorflow and Keras
• Tensorflow 1.0 and Tensorflow 2.0

© 2023 Jieung Kim, All rights reserved

Tensorflow and Keras
• Tensorflow 1.0 and Tensorflow 2.0

© 2023 Jieung Kim, All rights reserved

Tensorflow and Keras
https://www.tensorflow.org/tutorials

https://www.tensorflow.org/tutorials

© 2023 Jieung Kim, All rights reserved

Tensorflow and Keras
https://www.tensorflow.org/tutorials/quickstart/beginner

https://www.tensorflow.org/tutorials/quickstart/beginner

© 2023 Jieung Kim, All rights reserved

Tensorflow and Keras
https://colab.research.google.com/github/tensorflow/docs/

blob/master/site/en/tutorials/keras/classification.ipynb

https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/keras/classification.ipynb
https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/keras/classification.ipynb

© 2023 Jieung Kim, All rights reserved

Tensorflow and Keras
• Tensorflow hub and model garden

• Tensorflow Hub (https://www.tensorflow.org/hub)
• A repository of trained machine learning models ready for fine-tuning and deployable

anywhere
• Reuse trained models like BERT and Faster R-CNN with just a few lines of code

• Model garden (https://www.tensorflow.org/guide/model_garden)
• Provides implementations of many state-of-the-art machine learning (ML) models for vision

and natural language processing (NLP)
• Provides workflow tools to let you quickly configure and run those models on standard

datasets

https://www.tensorflow.org/hub
https://www.tensorflow.org/guide/model_garden

© 2023 Jieung Kim, All rights reserved

Tensorflow model optimization toolkit
• Optimize machine learning models

• A suite of tools for optimizing ML models for deployment and execution
• The toolkit supports techniques used to:

• Reduce latency and inference cost for cloud and edge devices (e.g., mobile, IoT)
• Deploy models to edge devices with restrictions on processing, memory, power-

consumption, network usage, and model storage space
• Enable execution on and optimize for existing hardware or new special purpose

accelerators
• Two famous techniques

• Weight pruning
• Quantization
• Weight clustering

© 2023 Jieung Kim, All rights reserved

Tensorflow model optimization toolkit
https://www.tensorflow.org/model_optimization

https://www.tensorflow.org/model_optimization

© 2023 Jieung Kim, All rights reserved

Tensorboard
• Tensorboard (https://www.tensorflow.org/tensorboard)

• provides the visualization and tooling needed for machine learning experimentation:
• Tracking and visualizing metrics such as loss and accuracy
• Visualizing the model graph (ops and layers)
• Viewing histograms of weights, biases, or other tensors as they change over time
• Projecting embeddings to a lower dimensional space
• Displaying images, text, and audio data
• Profiling Tensorflow programs
• And much more

https://www.tensorflow.org/tensorboard

© 2023 Jieung Kim, All rights reserved

Tensorboard
https://www.tensorflow.org/tensorboard/get_started

https://www.tensorflow.org/tensorboard/get_started

© 2023 Jieung Kim, All rights reserved

Summary

© 2023 Jieung Kim, All rights reserved

Summary
• Summary

• Websites and Youtube channels for Google techs and lives
• Provides a lot of useful information for Google and google techs

• Programming language style guides and Googletest framework
• Following the style guide and use a Googletest framework (only for C++) will dramatically

improve the project quality
• Machine learning related tools

• Colab: A web-based and highly readable Python programming IDE
• Tensorflow and Keras: A tool to build machine learning models
• Tensorflow model optimization toolkit: A tool to optimize machine learning models
• Tensorflow hub and model garden: Pre-built machine learning models
• Tensorboard: A tool to experiment machine learning models

© 2023 Jieung Kim, All rights reserved

Q & A

