
JIEUNG KIM
jieungkim@inha.ac.kr

How a Software Engineer Works?

1

Contents
• How a software engineer works

• Software vs. program
• Software development life cycle
• Day in the life of a software engineer

• Two important skills for software engineers
• Code review
• Software testing & unit testing

2

3

How a software engineer works

4

Software vs. program

Software vs. program
• Software

• A collection or set of programs,
procedures, data, or instructions

• They instruct computer about what to do
• They are designed to perform well defined

functions

• Program
• A collection of instructions or ordered

operations for computer
• They perform specific function or perform

a particular task
• They achieve a specific result

5

Software vs. program

6

Software Program
Various categories of software includes application software,
system software, computer programming tools, etc

There are no such categories of program

Size of software generally ranges from megabytes (Mb) to
gigabytes (Gb)

Size of program generally ranges from kilobytes (Kb) to
megabytes (Mb)

Software’s are usually developed by people having expert
knowledge and experience as well as are trained in developing
software and are also referred to as software developers

Programs are usually developed by person who is beginner
and have no prior experience

It requires more time to create software than program It requires less time to create program than software

… …

Software

7

Software
• Software can be divided into several types

• Based on its areas and implementations
• Two main categories

• System software
Application software

8

System software
• System software definition

• It allows the user to interact with the hardware components of a computer system
• The interface (allows the users to interact with the core system) is provided by the software
• The system software can be called the main or the alpha software of a computer system
• It can be further divided into several major types

9

System software
• System software examples

• The operating system
• Governs and maintains the inter-cooperation of the components of a computer system

• The language processor
• Provides the methods for human-machine interactions with multiple languages
• Divided into multiple types

• Compiler
• Convert High-Level Language into machine level language in one go
• C, C++ and Scala use compilers

• Interpreter
• Convert High-Level Language into machine level language line-by-line
• Python, Ruby and Java use an interpreter

10

System software
• System software examples

• Utility software
• The most basic type of software
• Helping the management of the system
• Examples

• Antivirus Software
• provide protection to the computer system from unwanted malware and viruses
• V3, QuickHeal, McAfee etc.

• Text-editors
• Help the users to take regular notes and create basic text files
• Notepad, Gedit, Emacs, Vim, etc.

11

System software
• System software examples

• Device drivers
• Acts as an interface between the various Input-Output devices and the users or the

operating system
• For example, printers, and web cameras come with a driver disk that is needed to be

installed into the system to make the device run in the system
• BIOS

• Basic Input Output System
• It is a small firmware that controls the peripheral or the input-output devices attached to the

system
• Also responsible for starting the OS or initiating the booting process

12

Application software
• Application software

• Used to run to accomplish a particular action and task
• Dedicated to performing simple and single tasks

• E.g., a single software cannot serve both the reservation system and banking system
• Divided into two types

• General purpose application software: comes in-built and ready to use, manufactured
by some company or someone

• Microsoft Excel – Used to prepare excel sheets
• VLC Media Player – Used to play audio/video files
• Adobe Photoshop – Used for designing and animation and many more

• Specific purpose application software: Is customizable and mostly used in real-time or
business environments

• Ticket Reservation System
• Hotel Management System

13

14

Software development life cycle
(SDLC)

Software development life cycle (SDLC)
• Software development life cycle (SDLC)

• SDLC is a common term of an efficient approach for the software development
• A process used in the software industry to produce software with the highest quality and

lowest cost in the shortest time
• The entire software development process includes 6 stages
• It specifies the task(s) to be performed at various stages by a software engineer/developer
• It’s vital for a software developer to have prior knowledge of this software development

process
• Google also educates the similar thing with this during the orientation

15

Software development life cycle (SDLC)

16

1. Planning phase
• Software development life cycle (SDLC) - 1. Planning phase

• Input: Client proposal or requirements
• Requirement analysis is the most important and fundamental phase in SDLC
• Senior members (with other team members) perform the following things to define the various

technical approaches to implement the project successfully with minimum risks
• The basic project approach
• The product feasibility study in the economical, operational and technical areas
• Quality assurance requirements
• Risk identification associated with the project

• Output: Technical Feasibility Study/Project initiation

17

2. Analysis phase
• Software development life cycle (SDLC) - 2. Analysis phase

• Input: Technical feasibility study and funding
• Clearly define and document the product requirements and get them approved from the

customer or the market analysts
• Output

• Software Requirement Specification (SRS)
• Consists of all the product requirements to be designed and developed during the project

life cycle

18

Let’s take look at the IEEE SRS template
(Google also uses the similar form when we specify software requirements)

3. Design phase
• Software development life cycle (SDLC) - 3. Design phase

• Input: SRS
• Write a Design Document Specification (DDS)

• Contains more than one design approach for the product architecture
• Defines all the architectural modules of the product along with communications and data

flows of sub modules and third parties
• Be reviewed by all the important stakeholders and based on various parameter (e.g., risk

assessment, design modularity, etc)
• The internal design of all the modules should be clearly defined

• Write high level design (HLD) / detail design (DDD) based on DDS
• Output: DDS, HLD, and/or DDD

19

4. Build phase (implementation)
• Software development life cycle (SDLC) - 4. Build phase

• Input: DDD (Detail Design Document)
• The actual development starts and the product is built based on DDD
è If the design is performed in a detailed and organized manner, code generation can be
accomplished without much hassle

• Developers must follow the coding guidelines (e.g., Google C++ style guide)
• Output: Program/software

20

https://google.github.io/styleguide/cppguide.html

5. Test phase
• Software development life cycle (SDLC) - 5. Test phase

• Input: Un-tested program/software, Test plan document
• Perform tests based on SRS

• Testing only stage where product defects are reported, tracked, fixed and retested
• Continuing it until the result reaches the quality standards defined in the SRS

• Output: tested program/software

21

6. Deployment phase
• Software development life cycle (SDLC) - 6. Deployment phase

• Input: Tested program/software, migration plan
• Released formally in the appropriate market as per the business strategy of that organization
• The product may first be released in a limited segment and tested in the real business

environment (UAT- User acceptance testing)
• After the product is released in the market, its maintenance is done for the existing customer

base
• Output: Tested program/software migrated into production and celebrate

22

23

Day in the life of a software
engineer

Day in the life of a software engineer –
general things to do

• Software engineer works
• Set the goal with the manager for the upcoming 3 or 6 months
• Work with a team, but individually contribute to the software
• Sync with coworkers by team meetings, emails, and chat
• Attend several in-company classes

• E.g., language self-study, libraries, and tools
• Attend bigger size meetings

• Town hole meeting
• All hands

• Contributions to the community
• Work as an interviewer
• Learn and share new technologies
• Voluntary works for outside communities

24

Day in the life of a software engineer –
coding related things

• Software engineer works
• Become familiar with team projects and codebases
• Find out topics that we can contribute to
• Write proposals or list up items
• Share with other members and get feedback from others
• Coding / testing / reviewing / submitting
• Present what we have done with our team and others outside of our team

25

26

Two important skills for software
engineers

Software failure

Software failure

Software failure
• Software failure examples

• Radiotherapeutic medical device
• Derived from Therac-6

• Two basic modes of operation
• Safety features in hardware instead of software
• 6 confirmed deaths with a root cause of radiation burn

• Software race condition
• Poor software design and QA
• Misleading user interface
• Root cause: Poor understanding of software reliability issue

Software failure
• Software crisis examples

• Ariane 5
• Derived from Ariane 4 (reuses code from previous reliable

and time-prove vehicle)
• Exploded on its first voyage on June 4th 1996

• 64 bit float containing velocity truncated to a 16 bit
integer in a non-critical software component

• Caused an uncaught exception that propagated to the
control component

• A safety component triggered mission abort
• The non-critical component served no actual purpose

• $370 million in damage
• ESA had spent 10 years and $7 billion developing the A5

Software failure

1996 2018

Ariane 5 explosion
$370 million

50% of American p
ersonal record

Recalls More than
150,000 vehicles

…
2021~2022

Software failure

Software failure

$2.08 trillion

The cost of
poor software quality

in the US (2020)

$2.08
trillion

Software failure

$1.63
trillion

$2.08 trillion

Korea GDP
(2020)

$1.89
trillion

Italy GDP
(2020)

$2.63
trillion

France GDP
(2020)

$20.9
trillion

USA GDP
(2020)

The cost of
poor software quality

in the US (2020)

$2.08
trillion

Software failure
pr

ac
tic

al

Expressiveness
level Assurance level Cost level

Code review Very high Very low Medium
Testing Medium Low Medium

Type checker
(Java, Haskell, Rust) Low High low

Static alaysis
(Coverity, Infer) Medium Medium low

Formal verificaiton
(UPPAAL, Z3, Adga, Coq) Medium ~ High High ~ Very high Medium ~ Very high

36

Code review

Code review
• Code review

• Careful, systematic study of source code by people who are not the original author of the code
• Analogous to proofreading a term paper

37

Code review
• Purpose of code review

• Can catch many bugs, design flaws early
• > 1 person has seen every piece of code

• Insurance against author’s disappearance
• Accountability (both author and reviewers are accountable)

• Forcing function for documentation and code improvements
• Authors to articulate their decisions
• Authors participate in the discovery of flaws
• Prospect of someone reviewing your code raises quality threshold

• Inexperienced personnel get hands-on experience without hurting code quality
• Pairing them up with experienced developers
• Can learn by being a reviewer as well

• Google has a readability reviewer class for Google software engineers

38

Code review
• Purpose of code review - by numbers

• From Steve McConnel’s Code Complete
• Average defect detection rates

• Unit testing: 25%
• Function testing: 35%
• Integration testing: 45%
• Design and code inspections: 55% and 60%

• 11 programs developed by the same group of people
• First 5 without reviews: average 4.5 errors per 100 lines of code
• Remaining 6 with reviews: average 0.82 errors per 100 lines of code
• Errors reduced by > 80%

• After AT&T introduced reviews, 14% increase in productivity and a 90% decrease in defects

39

https://en.wikipedia.org/wiki/Code_Complete

Code review
• Code reviews should look at the following things

• Design - Is the code well-designed and appropriate for your system?
• Functionality - Does the code behave as the author likely intended?
• Complexity - Could the code be made simpler?
• Tests - Does the code have correct and well-designed automated tests?
• Naming - Did the developer choose clear names for variables, classes, methods, etc.?
• Comments - Are the comments clear and useful?
• Style - Does the code follow our style guides?
• Documentation - Did the developer also update relevant documentation?

• Again, each project or company has its own guideline that developers
have to follow (e.g., Google C++ style guide)

40

https://google.github.io/styleguide/cppguide.html

Code review
• Code review in industry

• Code reviews are a very common industry practice
• Made easier by advanced tools that

• Integrate with configuration management systems
• Highlight changes (i.e., diff function)
• Allow traversing back into history

• Google also provide integrated code review tool with our development tools.
• To taste it, you can use code review system of Github.

41

https://github.com/features/code-review/

Code review

42

• Code review in Github

Code review
• How to do code review

• No official style guide
• Strictly enforcing personal style in larger projects is prohibited
• There are some rules that are quite sensible, removing “bad smells”
• “Bad smells”

• The coding patterns that lack expandability/flexibility and hinder future code development
• The following things are frequent and easy to get rid of

• Duplicated code is a maintenance nightmare
• Extract it into a function that you can call where needed

• Magic numbers and strings don’t tell the reader what they mean
• Use named constants instead

• Dead code makes your code complex and redundant comments hurt readability
• Just throw it away

43

Code review
• Common guidelines in code review

• The rule of the three: If a class defines one (or more) of the following, it should explicitly define
all three, which are 1) destructor, 2) copy constructor, 3) copy assignment operator

• Do not use #define unless you have to use it
• Try to use const member functions and variables
• Set up the criteria on class, function, field, and variable names
• Locate functions in proper classes
• Try to use initializer list
• Use iteration over STL containers
• …

44

45

#define Fresh 1
#define Sophomore 2
#define Junior 3
#define Senior 4

class Student {
public:
Student(int id, int year) {

student_id = id;
student_year = year;

};

~Student();

int GetStudentID() { return student_id; }
int get_student_year() { return student_year; }

private:
int student_id;
int student_year;

};

bool FindStudent(int id, std::vector<Student> students) {
for (int i = 0; i < students.size(); i++) {

if (students[i].GetStudentID() == id) {
return true;

}
}
return false;

}

46

#define Fresh 1
#define Sophomore 2
#define Junior 3
#define Senior 4

class Student {
public:
Student(int id, int year) {

student_id = id;
student_year = year;

};

~Student();

int GetStudentID() { return student_id; }
int get_student_year() { return student_year; }

private:
int student_id;
int student_year;

};

bool FindStudent(int id, std::vector<Student> students) {
for (int i = 0; i < students.size(); i++) {

if (students[i].GetStudentID() == id) {
return true;

}
}
return false;

}

Do not use #define

Violate the rule of
the three

Inconsistency in
function names

Fields are not distinguishable from local variables

Iterator is not used

References should be used

Initializer list is not used

47

class Student {
public:
enum StudentYear { FRESH = 1, Sophomore, Junior, Senior };

Student(const int id, const StudentYear year) :
id_(id), year_(year) {};

Student(const Student& student) :
id_(student.id_), year_(student.year_) {};

Student& operator=(const Student& student) {
if (this != &student) {

*this = Student(student);
}
return *this;

};
~Student();

int GetId() { return id_; }
int GetYear() { return year_; }

bool FindStudent(const int id,
const std::vector<Student>& students) const {
for (const auto& student : students) {

if (student.id_ == id) {
return true;

}
}
return false;

}

private:
const int id_;
StudentYear year_;

};

48

int STANDARD=0, BUDGET=1, PREMIUM=2, PREMIUM_PLUS=3;

class Account {
public:
double principal,rate; int daysActive,accountType;

};

double calculateFee(std::vector<Account> accounts)
{

double totalFee = 0.0;
Account account;
for (int i=0;i<accounts.size();i++) {

account=accounts[i];
if (account.accountType == PREMIUM ||

account.accountType == PREMIUM_PLUS)
totalFee += .0125 * (// 1.25% broker's fee

account.principal * pow(account.rate,
(account.daysActive/365.25))
- account.principal); // interest-principal

}
return totalFee;

}

49

Software testing & unit testing

Software testing
• Software testing

• Evaluation of the software against requirements gathered from users and system specifications

50

Effects: If arr is null throw exception
else return the number of occurrences of 0 in arr
def numZero (arr):

count = 0
for i in range(1, len(arr)):
if arr[i] == 0:

count += 1

return count

Fault: Should start searching at 0, not 1
Test 1

[2,7,0]
Expected: 1
Actual: 1

Test 2
[0,2,7]
Expected: 1
Actual: 0

Error: i is 1, not 0, on the first iteration
Failure: none

Error: i is 1, not 0
Error propagates to the variable count
Failure: count is 0 at the return statement

Software testing
• Does testing works?

• "measuring over 20 projects: if you have a large number of unit tests your code will be an order
of magnitude (x10) less complex.“

• Controlled study results:
• “..quality increased linearly with the number of programmer tests...”
• “..test-first students on average wrote more tests and, in turn, students who wrote more

tests tended to be more productive...”

51

http://agilepainrelief.com/notesfromatooluser/2008/11/misconceptions-with-test-driven-development.html
http://collaboration.csc.ncsu.edu/laurie/Papers/TDDpaperv8.pdf

http://agilepainrelief.com/notesfromatooluser/2008/11/misconceptions-with-test-driven-development.html
http://collaboration.csc.ncsu.edu/laurie/Papers/TDDpaperv8.pdf

Software testing

52

Code

Design

Requirements

System Engineering

Unit Testing

Integration Testing

Validation Testing

System Testing

Abs
tra

ct
to

co
nc

ret
e

Narr
ow

 to

Broa
de

r s
co

pe

Software testing
• Testing – levels

• Unit testing
• Concentrates on each component/function of the software as implemented in the code
• Exercises specific paths in a component's control structure to ensure complete coverage

and maximum error detection
• Integration testing

• Focuses on the design and construction of the software architecture
• Focuses on inputs and outputs, and how well the components fit and work together

• Validation testing
• Requirements are validated against the constructed software
• Provides final assurance that the software meets all functional, behavioral, and

performance requirements
• System testing

• The software and other system elements are tested as a whole
• Verifies that all system elements (software, hardware, people, databases) mesh properly

and that overall system function and performance is achieved

53

Software testing
• Testing – approaches

• The “box” approach
• White-box testing

• Uses the control structure part of component-level design to derive the test cases
• Black-box testing

• Focuses on the functional requirements and the information domain of the
software

• The tester identifies a set of input conditions that will fully exercise all functional
requirements for a program

• Static, dynamic, etc.

54

Software testing
• Testing – types, tactics, and techniques

• Alpha testing
• Carried out by the test team within the developing organization

• Beta testing
• Performed by a selected group of friendly customers

• Acceptance testing
• Performed by the customer to determine whether to accept or reject

the delivery of the system
• Performance testing, stress testing, volume testing, configuration testing, compatibility testing,

regression testing, maintenance testing, usability testing, etc.

55

Software testing
• Unit testing frameworks and libraries

• Java
• NUnit, Junit, TestNG, Mockito, and PHPUnit

• Python
• Robot, PyTest, Unittest, DocTest, Nose2, and Testify

• C/C++
• Googletest, Boot Test Library, QA Systems Cantata, Parasoft C/C++ test, Microsoft Visual

Studio, Cppunit, Catch, Bandit, and CppUTest
• JavaScript

• Jest, Mocah, Storybook, Jasmine, Cypress, Puppeteer, Testing Library, and WebdriverIO

56

Googletest framework
• Googletest framework

• A unit testing library for the C++ programming language.
• Repository

• http://code.google.com/p/googletest/
• Projects using Google Test

• Android Open Source Project operating system
• Chromium projects (behind the Chrome browser, Edge browser, and Chrome OS)
• LLVM compiler
• Protocol Buffers (Google’s data interchange format)
• OpenCV computer vision library
• Several internal C++ projects at Google

• Study materials
• README file: https://github.com/google/googletest/blob/master/README.md
• Googletest user’s guide: https://google.github.io/googletest/
• Whittaker, James (2012). How Google Tests Software. Boston, Massachusetts: Pearson

Education. ISBN 0-321-80302-7

57

http://code.google.com/p/googletest/
https://github.com/google/googletest/blob/master/README.md
https://google.github.io/googletest/
https://www.amazon.com/Google-Tests-Software-James-Whittaker/dp/0321803027

Create tests
• Creating a basic test

• Target code: prototype for square-root

• Test case with Googletest

58

double square-root (const double);

#include "gtest/gtest.h"
TEST (SquareRootTest, PositiveNos) {

EXPECT_EQ (18.0, square-root (324.0));
EXPECT_EQ (25.4, square-root (645.16));
EXPECT_EQ (50.3321, square-root (2533.310224));

}
TEST (SquareRootTest, ZeroAndNegativeNos) {

ASSERT_EQ (0.0, square-root (0.0));
ASSERT_EQ (-1, square-root (-22.0));

}

#include "gtest/gtest.h"
TEST (SquareRootTest, PositiveNos) {

EXPECT_EQ (18.0, square-root (324.0));
EXPECT_EQ (25.4, square-root (645.16));
EXPECT_EQ (50.3321, square-root (2533.310224));

}
TEST (SquareRootTest, ZeroAndNegativeNos) {

ASSERT_EQ (0.0, square-root (0.0));
ASSERT_EQ (-1, square-root (-22.0));

}

Create tests

59

Test hierarchy name Unit test namePredefined macro in gtest.h

Predefined macros that
checks result of
square-root

double square-root (const double);

Check results
• Assertions in Googletest

• Google Test assertions are macros that resemble function calls
• You test a class or function by making assertions about its behavior
• EXPECT_*

• Non-fatal assertion
• Versions generate nonfatal failures
• Test will be continued even if the assertion is not satisfied

• ASSERT_*
• Fatal assertion
• Versions generate fatal failures when they fail, and abort the current function
• Test will directly fail if the assertion is not satisfied

60

Check results
• Basic assertions

61

Fatal assertion Nonfatal assertion Verifies
ASSERT_TRUE(condtion); EXPECT_TRUE(condtion); Condition is true

ASSERT_FALSE(condition); EXPECT_FALSE(condition); Condition is false

Check results
• Binary comparison

62

Fatal assertion Nonfatal assertion Verifies
ASSERT_EQ(expected,

actual);
EXPECTED_EQ(expected,

actual);
expected == actual

ASSERT_NE(val1, val2); EXPECT_NE(val1, val2); val1 != val2

ASSERT_LT(val1, val2); EXPECT_LT(val1, val2); val1 < val2

ASSERT_LE(val1, val2); EXPECT_LE(val1, val2); val1 <= val2

ASSERT_GT(val1, val2); EXPECT_GT(val1, val2); val1 > val2

ASSERT_GE(val1, val2); EXPECT_GE(val1, val2); val1 >= val2

Run tests

63

int main(int argc, char ∗∗argv) {
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();

}

• Initialize the framework
• Must be called before RUN_ALL_TESTS

• Must be called only once
• Multiple calls to it conflicts some features of the framework

• Automatically detects and runs all test tests defined using the TEST macro

Run tests

64

Running main() from user_main.cpp
[==========] Running 2 tests from 1 test case.
[----------] Global test environment set-up.
[----------] 2 tests from SquareRootTest
[RUN] SquareRootTest.PositiveNos
..\user_sqrt.cpp(6862): error: Value of: sqrt (2533.310224)

Actual: 50.332
Expected: 50.3321
[FAILED] SquareRootTest.PositiveNos (9 ms)
[RUN] SquareRootTest.ZeroAndNegativeNos
[OK] SquareRootTest.ZeroAndNegativeNos (0 ms)
[----------] 2 tests from SquareRootTest (0 ms total)

[----------] Global test environment tear-down
[==========] 2 tests from 1 test case ran. (10 ms total)
[PASSED] 1 test.
[FAILED] 1 test, listed below:
[FAILED] SquareRootTest.PositiveNos

1 FAILED TEST

Python unittest
• A module in the Python standard library that provides various automations for

testing
• Main concepts

• TestCase: basic unit for tests in the unittest framework
• Test suite: a set of test cases
• Fixture

• Codes that will be performed before and after test functions
• It is useful to check whether the testing environment is well established before performing the

actual test
• It is also used to build database or tables and clean up resources before/after testing

• Assertion
• It determines whether each unit test passes
• It provides various checkers, including bool tests, validities of instances and exception

handlings
• Tests will fail when assertion fails

Python unittest overview
1. Import unittest module
2. Create a subclass of “unittest.TestCase”
3. Make a test method with the name “test*”. Add self.assert*() to check the

result.
4. Call unittest.main() to run the test

Create & run tests

myCalc.py

def add(a, b):

return a + b

def substract(a, b):

return a - b

Create & run tests
tests.py

import unittest
import myCalc

class MyCalcTest(unittest.TestCase):

def test_add(self):
c = myCalc.add(20, 10)

self.assertEqual(c, 30)

def test_substract(self):

c = myCalc.substract(20, 10)
self.assertEqual(c, 10)

if __name__ == '__main__':
unittest.main()

Create & run tests
myUtil.py

import os

def filelen(filename):
f = open(filename, "r")

f.seek(0, os.SEEK_END)

return f.tell()

def count_in_file(filename, char_to_find):
count = 0

f = open(filename, "r")

for word in f:

for char in word:

if char == char_to_find:
count += 1

return count

Create & run tests
import unittest

import os
import myUtil

class MyUtilTest(unittest.TestCase):
testfile = 'test.txt'

Fixture

def setUp(self):

f = open(MyUtilTest.testfile, 'w')
f.write('1234567890')

f.close()

def tearDown(self):

try:
os.remove(MyUtilTest.testfile)

except:
pass

def test_filelen(self):
leng = myUtil.filelen(MyUtilTest.testfile)

self.assertEqual(leng, 10)

def test_count_in_file(self):

cnt = myUtil.count_in_file(MyUtilTest.testfile, '0')
self.assertEqual(cnt, 1)

if __name__ == '__main__':
unittest.main()

Check results

Statement Meaning Statement Meaning

assertEqual(a, b) a == b assertNotEqual(a, b) a != b

assertTrue(x) bool(x) is True assertFalse(x) bool(x) is False
assertis(a, b) a is b assertIsNot(a, b) a is not b
assertIsNone(x) x is None assertIsNotNone(x) x is not None
assertIn(a, b) a in b assertNotIn(a, b) a not in b
assertIsInstance(a, b) isinstance(a, b) assertNotIsInstance(a, b) not instance(a, b)

72

Questions?

73

Code review example

74

// An individual account. Also see XXX.
class Account {

public:
// Constructor with default value.
// It is better for us to provide those default values with config files.
Account() :
broker_fee_percent_(0.0125),
days_per_year_(365.25) {};

// Constructor with user-defined broker fee percent and days per year.
Account(double broker_fee_percent, double days_per_year) :

broker_fee_percent_(broker_fee_percent),
days_per_year_(days_per_year) {};

// Copy constructor
Account(const Account& account) :
broker_fee_percent_(account.broker_fee_percent_),

days_per_year_(account.days_per_year_),
principal_(account.principal_),
rate_(account.rate_),
days_active_(account.days_active_),
account_type_(account.account_type_) {};

Account& operator=(const Account& account) {
if (this != &account) {

*this = Account(account);
}
return *this;

};
~Account();

75

// The varieties of account our bank offers.
enum AccountType {STANDARD, BUDGET, PREMIUM, PREMIUM_PLUS};

// Compute interest.
double GetInterest() {

double years = days_active_ / days_per_year_;
double compound_interest = principal_ * pow(rate_, years);
return compound_interest - principal_;

}

// Return true if this is a premium account.
bool IsPremium() {

return account_type_ == AccountType::PREMIUM ||
account_type_ == AccountType::PREMIUM_PLUS;

}

// Return the sum of the broker fees for all the given accounts.
double CalculateFee(std::vector<Account>& accounts) {

double total_fee = 0.0;
for (Account account : accounts) {

if (IsPremium()) {
total_fee += broker_fee_percent_ * GetInterest();

}
}
return total_fee;

}

76

private:
// The portion of the interest that goes to the broker.
const double broker_fee_percent_;
// The number of days per one year.
const double days_per_year_;
double principal_;
// The yearly, compounded rate (at 365.25 days per year).
double rate_;
// Days since last interest payout.
int days_active_;
// Account type.
AccountType account_type_;

};

