Introduction to
formal verification

TechTalk @ Google
2022-08-11

Jieung Kim

© 2023 Jieuna Kim. All riahts reserved

Contents

Contents

* Intro - Do we need formal verification?
« Formal verification intro with examples
« Formal verification project example
 Conclusion

INntro —
Do we need
formal verification?

Software in the world

Software failure

Software failure

Ariane 5 explosion 50% of American Recalls More than
$370 million personal record 150,000 vehicles
\158{000 TESLA RECALL

DATA BREACH by the numbers

e ol

px')p'ulation:

DATA ELEMENT STOLEN IMPACTED U.S. CONSUMERS
Name
Date of birth
Social Security Number NG T T

v

1996 2018 2021~2022

Software failure

AUTHOR

HERB KRASNER

CISQ Advisory Board Member and
retired Professor of Software
Engineering at the University of Texas at
Austin.

He can be reached at
hkrasner@utexas.edu.

THE COST OF POOR SOFTWARE QUALITY IN THE US: A 2020 REPORT

The Cost of Poor
Software Quality in
the US: A 2020
Report

The Consortium for Information & Software Quality™ (CISQ™) released
new research: The Cost of Poor Software Quality in the US: A 2020

SYNOPSYs

con to Software

Engmeenng

Carnegie Mellon

NORTHROP
GRUMMAN

» Unsuccessful IT/software projects - $260 billion (up from $177.5 billion in 2018)

» Poor quality in legacy systems - $520 billion (down from $635 billion in 2018)

» Operational software failures - $1.56 trillion (up from $1.275 trillion in 2018)

Software failure

$2.08 trillion

$2.08

trillion

The cost of
poor software
quality in the

US (2020)

v

Software failure

$2.08 trillion

$2.63

$2.08 trillion

$1.89 trillion

trillion

ltaly GDP The cost of France GDP
(2020) poor software (2020)
quality in the

US (2020)

Software failure

The cost of poor
software quaility

GDP

9.5 %

0> % $20.4
$18.7 il
trillion
$10.9
trillion $1.1
$0.06 trillion $1.95
trillion trillion

2002 2016 2018

9.95 %

$20.9
trillion

$2.08
trillion

2020

Software failure

$2.08 trillion

$0.52 | Poor quality
ey [' legacy
$1.56 trillion | systems

il 55| | Operational
trillion SW failiures

v

The cost of
poor software
quality in the

US (2020)

Reduce operational software failures

Applications of

our software

Specification of
our software

Our software

Our software faithfully implements the
specification based on underlying HW
and software specifications

Specification of underlay

HW & underlying
software

(underlay)

Replace poor legacy software

Applications of

our software

Specification of our - Specification of our
Specification of our software (New version) — software (old version)

software (New version)

Our software (new version) faithfully
implements the specification (new
version) based on underlying HW an
d software specifications

Our software
W EYAZE S e]h)

Specification of underlay

HW & underlying

software
(underlay)

Tools for software assurance

_ Expressiveness level | Assurance level Cost level

Code review Very high Very low Medium
Testing Medium Low Medium

Type checker
(Java, Haskell, Rust)

Static alaysis
(Coverity, Infer)

Low High low

Medium Medium low

Can those tools entirely tackle previous two challenges?

> NO!

Tools for software assurance

_ Expressiveness level | Assurance level Cost level

Code review Very high Very low Medium
_ Testing Medium Low Medium
o
=2 Type checker :
& (Java, Haskell, Rust) Low High low
S Static alaysis
iy Medium Medium low
(Coverity, Infer)
Formal verificaiton : : : : : :
(Z3, Adga, Coq) Medium ~1H|gh High ~ Very high Medium ~ Verylhlgh
How can we effectively How can we avoid

use high expressiveness? very high cost?

Tools for software assurance

What do we need to know for formal verification?
* It is built on top of lots of unerlying theories

e But, verification engineers can only focus on the tiny subset
that is actually required for the verfication target

17

Can 1t actually remove bugs?

An Empirical Study on the Correctness of
Formally Verified Distributed Systems

Pedro Fonseca Kaiyuan Zhang

XiWang Arvind Krishnamurthy

University of Washington
{pfonseca, kaiyuanz, xi, arvind}@cs.washington.edu

Abstract

Recent advances in formal verification techniques enabled
the implementation of distributed systems with machine-
checked proofs. While results are encouraging, the impor-
tance of distributed systems warrants a large scale evaluation
of the results and verification practices.

This paper thoroughly analyzes three state-of-the-art, for-
mally verified implementations of distributed systems: Iron-
Fleet, Verdi, and Chapar. Through code review and testing,
we found a total of 16 bugs, many of which produce serious
consequences, including crashing servers, returning incor-
rect results to clients, and invalidating verification guaran-
tees. These bugs were caused by violations of a wide-range
of assumptions on which the verified components relied. Our
results revealed that these assumptions referred to a small
fraction of the trusted computing base, mostly at the inter-
face of verified and unverified components. Based on our
observations, we have built a testing toolkit called PK, which
focuses on testing these parts and is able to automate the de-
tection of 13 (out of 16) bugs.

Specification

Verified distributed .
system code Verifier (core)
Shim layer

Figure 1: An overview of the workflow to verify a distributed
system implementation.

Formal verification, in particular, offers an appealing ap-
proach because it provides a strong correctness guarantee
of the absence of bugs under certain assumptions. Over the
last few decades, the dramatic advances in formal verifica-
tion techniques have allowed these techniques to scale to
complex systems. They were successfully applied to build
large single-node implementations, such as the seL4 OS ker-
nel 171 and the ComnCert comniler 1351 More recentlv

18

Can 1t actually remove bugs?

Applications of

our software

Invariants provides correctness
property, but it might have

Specification of

“pTTtes our-software-——-""-- o

bugs that are not described in
Invariants

Our software

Formal verification can

///» guarantee the correctness of

target software module

“--1-Specifrcatron of -underiay -

HW & underlying

software
(underlay)

\ Assumptions about unverified
components, so it may have

bugs

19

Formal verification intro
with examples

Formal verification

Definition

The act of proving the correctness of software with respect
to a certain formal specification using mathematics

Key components

« Mathematical notations for
« Program specifications
 Invariants of the system
« Underlying system models
(e.g., HW, Compiler, etc)

Specification

« Proofs for
« Program meet specifications
« Specficiations are consistent (i.e.,
all Invariants are well-defined)

Refinement

. Proof
relation

« Consists of

Program

« Subject of formal verificaiton

Proof Yes/No . Cor.e proof kernel (underlying
checker logic)

« Extended libraries for better
expressiveness

Verification tutorial:
simple stateless function

“given two positive numbers, find sum of all numbers between two"

« Mathematical (functional) Program example:
specs:

int range sum (int start, int end) {

e int sum = 0;
Definition range sum (start end : nat)
: nat := v
for (int i = start; 1 <= end; 1i++) {
(end * (end - 1) sum += 1;
- start * (start - 1)) / 2 }

return sum;

}

end.

Verification tutorial:
simple stateless function

Mathematical (functional) specifications

/
/
’
’
/
’
’
/
/
/
’
/
/
’
/
/
’
/

Generate same output (sum)

All possible inputs (start, end)

Low-level Implementation

24

Verification tutorial: abstract state

Software usually facilitates hardware states, memory and registers.

Mathematical state could be much simplier than those physical states.

Mathmatical (functional) list: Program example:

Variable A : Type. 1) With array

Inductive list : Type := int array list[kMaxLength];
: zclnlls: :lZSi list -> list. 1) With linked list

struct Node {
int data;
Node* next;
Node* prev;

b

Refinement relation (R): how mathematical list is related to the low-level structure.

Verification tutorial: abstract state

Mathematical (functional) specifications

(abs, args) ' =‘\ (abs’, ret)
R R
((mem, reg), args) ‘ =‘ =‘—> —>' ((mem’, reg’), ret)

Low-level Implementation

26

Verification tutorial: modularity

Decompose the entire software into multiple sub components,
verifying them, and combine their proofs together.

, Abstracted model by
hiding HW and C details

Specification of our software

New abstractions by

compose multiple High-level spec High-level
modules SPeC
High-level L High-level Low-level
spec spec spec
Low-level Low-level Low-level Low-level :
SPEC v SPEC SPEC ga];r)l/ecnc;j !glezfneecs:og roof

TCB (HW &
underlying SW)
abstraction

[e |

<
| Coode |

Specification of underlay

C correctness proof

e |

Verification tutorial: modularity

Mathematical (functional) specifications

((memy,, absy, regy), args) > ((memy,, absy’, regy’), args)
g gs) |

((mem,, abs,, req,), args) > > e —» ((mem/, abs/, reg,), args)
g g

] Low-level Implementation
« Contextual refinement

« Compositional approach to compositional verification of concurrent objects.
« Combined with several program logics, it can show consistency between the object

28
implementation and its abstract specification.

Verification tutorial: modularity

New abstractions by
compose multiple
modules

TCB (HW &
underlying SW)
abstraction

Specification of our software

, Abstracted model by

hiding HW and C details

. High-level
High-level spec op —

High-level High-level Low-level
spec w spec w spec

Low-level Low-level Low-level
spec w spec w spec

< <> <

Low-level
spec

iy

 —

C friendly spec for

easy correctness proof
+

C correctness proof

Specification of underlay

10

Verification tutorial: modularity

: How can we effectively
. use high expressiveness?

;;;;;

. L

. e
. .

.
e

P +"Abstracted model by
Specification of our software o .
P *.hiding HW and C detailg
""" New abstractions by~ .
.. compose multiple High-level spec o High-level
~~~~ mgodules Spec
........................ ﬁ ﬁ
High-level High-level Low-level
- spec w spec w spec .
Low-level Low-level Low-level Low-level :
spec o spec o spec spec C friendly spec for

easy correctness proof
<~ — .+

iy iy iy
- oF - on - Oh eee b C correctness proof

Specification of underlay

.........
..........
. .
. .
. .
o ‘e
- ‘e

" TCB (HW &
1 underlying SW)
*..abstraction .

.
. .
e .
0N .
--------------




Verification tutorial: modularity

. How can we effectively

: use high expressiveness? lvery high cost? I
( . “Rbstracted model by
Specification of ft o y
pecification of our software "..hiding HW and C details
e D 2
" New abstractions b')'/xj* :
i compose multiple 7. High-level spec Y Haiee
Nvmodules 2 spec
~ T < <
High-level High-level Low-level
- spec w spec w spec .
e < sl : RN
Low-level Low-level Low-level Low-level 7 )
spec w spec i spec spec .» C friendly spec for \‘

.........
.........
. .
. .
. .
o ‘e
- ‘e

" TCB (HW &
1 underlying SW)
*..abstraction .

.
. .
e .
0N .
------------

e

< e <

iy

Specification of underlay

+

‘ easy correctness proof ,

\C correctness proof

\.

Y —.

e

—

10



Formal verification projects



My formal verification researches

« CertiKOS: An Extensible Architecture for Building Certified Concurrent OS
Kernels. OSDI 2016

- Safety and Liveness of MCS Lock - Layer by Layer. APLAS 2017
. Certlfled concurrent abstraction layers Pl D| 2018

srtified concurrent OS kernels. Comm. of ACM 6

\SN%rCmZS 1a9ce A Modular Foundation for Simple, Verifiable Distributed Systems.
o)

Much ADO about failures: a fault-aware model for compositional verification
of strongly consistent distributed systems. Proc. ACM Program. Lang. 5(OOPSLA)

Adore: Atomic Distributed Objects with Certified Reconfiguration, PLDI 20

11



Distributed system verification

Distributed system

Computer 1 Computer 2 Computer 3 Computer 4
App. A. App. B. App. C. App. D.
1
Distributed system layer (middleware)
Local OS 1 Local OS 2 Local OS 3 Local OS 4

network

16



Distributed system software stack

Distributed services
(e.g, KV store).

SMR
(High-level API)

Distributed

protocols
(Low-level API)

17



Network-based models too complex

S time = 2

1 | leader = true
{

llabcll:lldefll
llfooll:llbarll

}

S time = 1

3 | leader = false
{

“abc”:"def”

}

e

e
N

time = 2

S
2 | leader = false
{

llabcll:lldefll
llfooll:llbarll

}




Network-based models too complex

Network errors
S time = 2
1 | leader = true

{
“abc”:"def”

"foo":"ba r
} \

S time = 1 prepare S time = 2
3 | leader = false 2 | leader = false
{

{ ) | | ' ab - "def”

”abC":"def" 1 n_n n
foo":"bar

} }

37



Network-based models too complex

Network errors

Protocol subtleties S tlme_: 2
1 | leader = true

{
“abc”:"def”

”fOO":"bar"

e

S time = 1

3 | leader = false
{

“abc”:"def”

}

e
TN

time = 2

S
2 | leader = false
{

llabCIl:lldefll
llfooll:llbarll

}




Network-based models too complex

Network errors

: S time = 2
Protocol subtleties 1 | leader = true
Application {

(distributed service)
bugs

llabcll:lldefll

“foo":"bar”
/ | \

e

S time = 1 S time = 2

3 | leader = false 2 | leader = false
{ {

iabe" et — “sbc”"def”

llfooll:llbarll

} }

39



Network-based models too complex

Distributed system
software stack

Distributed services
(e.g, KV store).

i

SMR

(High-level API)

A

Distributed

protocols
(Low-level API)

Non-determinism

- Complex interleaving

Network & node errors

- Several protocols and implementations

(paxos, raft, chain-replication, etc)

Lots of verificaiton works done

17



State machine replication too abstract

g -

4 SMR A
"abc”:"def” | "foo”: “bar”

- J

/ Internal (hidden) \

VAES
N -‘/

41



State machine replication too abstract

Distributed system
software stack

Distributed services
(e.g, KV store).

i

SMR

(High-level API)

A

Distributed

protocols
(Low-level API)

Deterministic

- Unified abstraction

Non-determinism

- Complex interleaving

Network & node errors

- Several protocols and implementations

(paxos, raft, chain-replication, etc)

Lots of verificaiton works done

17



Partial failure

S2
{
“abc”:"def”
}

S1
{
“abc”:"def”
}

S3
{
“abc”:"def”
}

43



Partial failure

e
&

Alice

S1

ll:lldefll
bar”

S3

S2
{
"abc”:"def”
}

"abc

Il:lldefll

44



Partial failure

S1

{

"abc”:
“foo"”:

"def”

"bar”

S2

”abC":”def"

06

45



Partial failure

S1

{

“foo"”:

"abc’

I:Ildefll

"bar”

e

S2

{

llabcll:lldefll
llfooll:llbarll

}

abc

}

“foo":"

"def”

bar”

46



Partial failure i1s important

Partial failure is a central reality of distributed computing. [. . . | Being robust in
the face of partial failure requires some expression at the interface level.
(Jim Waldo. A Note on Distributed Computing. 1994)

« Unavoidable feature unique to distributed systems

* Influence with all aspects of distributed protocols (e.g., leader
election and reconfiguration)

« Can be used for performance optimizations
« TAPIR (SOSP "15): Transactions with out-of-order commits
 Speculator (SOSP ‘05): Speculative distributed file system



Partial failure i1s important

Distributed system
software stack

Distributed services
(e.g, KV store).

-

SMR

(High-level API)

b

Distributed

protocols
(Low-level API)

Deterministic
Unified abstraction

Non-determinism
Complex interleaving

Network & node errors

Several protocols and implementations
(paxos, raft, chain-replication, etc)

Lots of verificaiton works done 17



ADO (Atomic distributed object)

Distributed system
software stack

Distributed services
(e.g, KV store).

-

~ SMR » ' Deterministic = Simple, but non-deterministic
(High-level AP) Unified abstraction abstraction

= Covers all protocols

'

« Non-determinism

ADO . . = Make connection between two
(atomic distributed | ]l © Complex interleaving APl< possible
SIEjEas - Network & node errors P
] - Several protocols and implementations
Distributed (paxos, raft, chain-replication, etc)
protocols

(Low-level API)

Lots of verificaiton works done 17




ADO state

”abC”:”def”

llfooll:llbarll

ADO Legend

Method
Timestamp

Persistent Log
Entry

50



ADO state

", i

“cat”;

"abc”:"def”
1

llfooll:llbarll

ADO L

Method

Timestamp

Method
Imesta

3

egend
Persistent Log
Entry

Cache Tree
Entry

51



ADQO operations

"abc":"def”
1

”fOO":”bar"

2

S

Refine

{ Prepare ]

52



ADQO operations

ADO

“abc”:"def” | “foo":"bar”
1 2
Multi-Paxos

S1 | “abc”:"def” | “foo": "bar”

4 1 2
S2 | "abc”:"def” | "foo":"bar” | “xyz":"123"
4 1 2 4
S3 | "abc":"def” | “foo":"bar” | “cat”:"dog” | “dot":"cot”
3 1 2 3

3

53



ADQO operations

ADO

”abC”:”def"

1

llfooll:llbarll
2

Multi-Paxos

llabcll:lldefll llfooll: llbarll
T 2

llabcll:lldefll llfooll:llbarll lleZII:ll1 23”
T 2 4

llabcll:lldefll llfooll:llbarll llcatll:lldogll lldotll:llcotll
1 2 3 3

54



ADQO operations

llcatll:lldog" "dot":"cot"
ADO 3 3
Ilabcll:lldefll

”fOO":”bar"

R

Multi-Paxos

S1 | “abc”:"def” | “foo”: “bar”
5 1 2
S2 | "abc”:"def” | “foo":"bar” | "xyz":"123"
g 1 2 4

53 llabcll:lldefll llfooll:llbarll llcatll:lldogll lldotll:llcotll
5 1 2 3 3

55



ADQO operations

‘cat”:"dog” “dot":"cot”
ADO 3 3
“abc”:"def” | “foo":"bar”
o

Multi-Paxos

S1 | “abc”:"def” | “foo": "bar” | "xyz":"123"

5 1 2 : 4

S2 | "abc”:"def” | "foo":"bar” | “xyz":"123"

5 1 2 4

S3 | "abc":"def” | “foo":"bar” | “cat”:"dog” | “dot":"cot”

5 1 2 3 3

56



ADQO operations

", i

“cat”:"dog”

lldotll:llcotll
3 3

ADO
"abc”:."def” | "foo":"bar”
o
Multi-Paxos
S1 | “abc”:"def” | "foo": "bar” | "xyz":"123"
5 1 2 4
52 | "abc":"def” | “foo":"bar” | “xyz":"123"
5 1 2 4
S3 | "abc":"def” | “foo":"bar” | “cat”:"dog” | “dot":"cot”
5 1 2 3 3

Get permission to update and select a starting point in the cache tree.




", i

ADQO Operations

ADO 3

”dOt":”COt"
3

“abc”:"def”
1

llfooll:llbarll
2

Multi-Paxos
S1

S2

S3

”abC”:”def" llfooll: llbarll lleZII:ll1 23” llbeell:llgeell
T 2 4 5

”abC”:”def" llfooll:llbarll lleZII:ll1 23”
T 2 4

”abC”:”def" llfooll:llbarll llcatll:lldogll lldotll:llcotll
1 2 3 3

58



ADQO operations

", i

“cat”:"dog”
ADO 3

”dOt":”COt"
3

“abc”:"def”
1

llfooll:llbarll
2

Multi-Paxos
S1

S2

S3

“abc”:"def”
1

llfooll: llbarll
2

"xyz":"123"
4

i

"bee":"gee”

“abc”:"def”
1

llfooll:llbarll
2

"xyz":"123"
4

“abc”:"def”
1

llfooll:llbarll
2

1IN

“cat”:"dog”

3

lld Ot":”COt"
3

59



ADQO operations

", i

“cat”:"dog”
ADO 3

”dOt":”COt"
3

llabClI:lldefll

”fOO":”bar"

of S
"bee”:"gee”
5
Multi-Paxos
S1 | "abc”:"def” | "foo”: "bar” | "xyz":"123" | "bee":"gee" | "bad":"cot”
5 1 2 4 5 5
S2 | "abc”:"def” | “foo":"bar” | "xyz":"123"
g 1 2 4
S3 | "abc":"def” | “foo":"bar” | “cat”:"dog” | “dot":"cot”
5 1 2 3 3

Invoking a Method

Add a new entry to the cache tree.




ADQO operations

“cat”:"dog” “dot":"cot”
ADO 3 3
"abc”:"def” | “foo":"bar”
of EOS
"bee"”:"gee” "bad":"cot”
5 5

Multi-Paxos N

S1 | "abc”:"def” | "foo”: "bar” | "xyz":"123" | "bee":"gee" | "bad":"cot” :

5 1 2 4 5 5

S2 | "abc”:"def” | “foo":"bar” | "xyz":"123" ‘

5 1 2 4

S3 | "abc":"def” | “foo":"bar” | “cat”:"dog” | “dot":"cot” ‘

5 1 2 3 3

Invoking a Method

Add a new entry to the cache tree.

61



ADQO operations

ADO

“abc”:"def”
1

llfooll:llbarll
2

", i

“cat”;
3

dog”

lldotll:llcotll
3
5 5

Multi-Paxos
S1

S2

S3

“abc”:"def”
1

llfooll:llbarll
2

"xyz":"123"
4

llbadll:llcotll
5

“abc”:"def”
1

llfooll:llbarll
2

"xyz":"123"
4

“abc”:"def”
1

llfooll:llbarll
2

"xyz":"123"

4

P

e

62



ADQO operations

", i

“cat”:"dog”
ADO 3

”dOt":”COt”
3

“abc”:"def”
1

llfooll:llbarll
2

5 5

Multi-Paxos
S1

S2

S3

“abc”:"def”
1

llfooll:llbarll
2

"xyz":"123"
4

"bee

i

"gee”
5

llbadll:llcotll
5

“abc”:"def”
1

llfooll:llbarll
2

"xyz":"123"
4

"bee

", i

"gee”
5

“abc”:"def”
1

llfooll:llbarll
2

"xyz":"123"

4

"bee

", i

"gee”
5

Ve

63




ADQO operations

”Cat : dog" "dOt":"COt"
3 3
”abC”:”def" "fOO"I"baI’"
1 2 || ————————
| nyZ":”1 2311 : ”bee":”gee"

ADO

A 4

. llbadll:llcotll
5

4 | 5
Multi-Paxos N
S1 | “abc”:"def” | “foo":"bar” | "xyz":"123" | "bee":"gee” | “bad":"cot”
5 1 2 4 5 5
S2 | "abc”:"def” | “foo":"bar” | “xyz":"123" | "bee":"gee” ‘
g 1 2 4 5
S3 | "abc":"def” | “foo":"bar” | "xyz":"123" | "bee":"gee” ‘
5 L 2 4 5

Move committed methods into the log and prune stale states from the tree.




ADQO operations

/ll II '/ n
cat”."dog

”dOt":”COt"
3

ADO 3
"abc":"def” | "foo":"bar”
1 2
| "xyz""123" | "bee""gee” "pad""cot”
4 5 ; 5
Multi-Paxos N
S1 | "abc”:"def” | “foo":"bar” | "xyz":"123" | "bee":"gee" | "bad":"cot”
5 1 2 4 5 5
S2 | "abc":"def"” | "foo":"bar” | “xyz":"123" | "bee":"gee” ‘
g 1 2 4 5
S3 | "abc":"def” | “foo":"bar” | "xyz":"123" | "bee":"gee” ‘
5 1 2 4 5

Move committed methods into the log and prune stale states from the tree.




ADQO operations

ADO
“abc”:"def” | "foo":"bar” | "xyz":"123" | "bee":"gee” _ ("bad":"cot”
1 2 4 5 5

Multi-Paxos N
S1 | "abc”:"def” | "foo":"bar” | “xyz":"123" | "bee":"gee” | "bad":"cot”
5 1 2 4 5 5
S2 | "abc":"def"” | "foo":"bar” | “xyz":"123" | "bee":"gee” ‘
g 1 2 4 5
S3 | "abc":"def” | “foo":"bar” | "xyz":"123" | "bee":"gee” ‘
5 1 2 4 5

Move committed methods into the log and prune stale states from the tree.




Connection with distributed protocols

4 I
ADO Model
ADO
N ‘ y
Refine
4 Y4 Y4
Primary
Paxos Raft Backup

- AN AN




Connection with distributed protocols

Refine

Groui

—

Commute



Distributed applications

ADO/SMR

/
DApp
ADO ADO
Refine
4 Y
DApp DApp
ADO I ADO ADO I ADO

69



Conclusion



Conclusion

« Formal verification can reduce the cost for the poor software
« Operational software failure cost
 Cost due to poor legacy systems

« Formal verification
« What is formal verification
« Formal verification key concept
« Modularity in formal verification

« ADO: formal verification project example
» Distributed system formal verification
 Unified and modular program abstractions for distributed systems



