
Software Testing &
Unit Test Frameworks

Jieung Kim

Aug. 2022

Contents

2

Contents

▪ Software testing
▪ Why testing is necessary
▪ Kinds of testing

▪ Introduce Googletest framework
▪ Googletest framework – Unit testing framework in C++
▪ Example

▪ Introduce Python unittest framework
▪ Python unittest framework – Unit testing library in Python
▪ Example

3

Software testing

4

Software in the world

5

Software crisis

6

Software crisis

7

Software crisis

Radiotherapeutic medical device
▪ Derived from Therac-6

▪ Two basic modes of operation
▪ Safety features in hardware instead of software

▪ 6 confirmed deaths with a root cause of
radiation burns

▪ Software race condition
▪ Poor software design and QA
▪ Misleading user interface
▪ Root cause: Poor understanding of software reliability

issue

8

Software crisis

Ariane 5
▪ Derived from Ariane 4 (reuses code from

previous reliable and time-prove vehicle)
▪ Exploded on its first voyage on June 4th 1996

▪ 64 bit float containing velocity truncated to a 16 bit
integer in a non-critical software component

▪ Caused an uncaught exception that propagated to the
control component

▪ A safety component triggered mission abort
▪ The non-critical component served no actual purpose

▪ $370 million in damage
▪ ESA had spent 10 years and $7 billion
developing the A5

9

Software failure

4

1996 2018

Ariane 5 explosion
$370 million

50% of American
personal record

Recalls More than
150,000 vehicles

…
2021~2022

Software failure

5

Software failure

6

The cost of
poor software
quality in the

US (2020)

$2.08
trillion

$2.08 trillion

Software failure

6

The cost of
poor software
quality in the

US (2020)

$1.56
trillion

$2.08 trillion
$0.52
trillion

$1.56 trillion

Poor quality
in legacy
systems

Operational
SW failiures

Software failure

6

$1.63
trillion

$2.08 trillion

Korea GDP
(2020)

$1.89
trillion

Italy GDP
(2020)

$2.63
trillion

Frace GDP
(2020)

$20.9
trillion

USA GDP
(2020)

$1.56
trillion

Poor quality
in legacy
systems

Operational
SW failiures

The cost of
poor software
quality in the

US (2020)

$1.56 trillion

$0.52
trillion

Software failure

6

2002

$2.08
trillion

$20.9
trillion

2020

$1.95
trillion

$20.4
trillion

$10.9
trillion

$18.7
trillion

$0.06
trillion

2016 2018

$1.1
trillion

0.5 %

5.9 %
9.5 %

9.95 %

The cost of poor
software quaility

GDP

Why do these things happen? - bugs

A software bug
▪ Is an error, flaw, or fault in a computer program or system.
▪ Causes the software to produce an incorrect or unexpected
result, or to behave in unintended ways

▪ Some are minor, but others cause disasters
▪ As we discussed, the cost is huge

16

Source of bugs

▪ Arithmetic
▪ Division by zero
▪ Arithmetic overflow or underflow
▪ Loss of arithmetic precision

▪ Rounding
▪ Numerically unstable algorithms (e.g., using floating point operations)

▪ Logic
▪ Infinite loops and infinite recursion

▪ Recourse
▪ Null pointer dereference
▪ Buffer overflow
▪ Double free error
▪ Access violation

17

Source of bugs

▪ Interface
▪ Incorrect API usage
▪ Incorrect hardware handling
▪ Incorrect assumptions of a particular platform

▪ Teamworking
▪ Unpropagated updates
▪ Comments out of data or incorrect
▪ Differences between documentation and product

18

How can we prevent bugs?

▪ Software engineering approach
▪ E.g., Software development life cycle / code review

▪ Programming language support
▪ E.g., type checker

▪ Testing

▪ Static analysis

▪ Verification

▪ Etc…

19

Software testing

Evaluation of the software against requirements gathered fro
m users and system specifications.

20

// Effects: If arr is null throw exception
// else return the number of occurrences of 0 in arr
int numZero (std::vector<int> arr) {

int count = 0;
for (int i = 1; i < arr.size(); i++) {

if (arr [i] == 0) {
count++;

}
}
return count;

}

Fault: Should start searching at 0, not 1
Test 1

[2,7,0]
Expected: 1
Actual: 1

Test 2
[0,2,7]
Expected: 1
Actual: 0

Error: i is 1, not 0, on the first iteration
Failure: none

Error: i is 1, not 0
Error propagates to the variable count
Failure: count is 0 at the return statement

Does testing work?

▪ "measuring over 20 projects: if you have a large number of u
nit tests your code will be an order of magnitude (x10) less
complex.“

▪ Controlled study results:
▪ “..quality increased linearly with the number of programmer tests...”
▪ “..test-first students on average wrote more tests and, in turn, students
who wrote more tests tended to be more productive...”

21

http://agilepainrelief.com/notesfromatooluser/2008/11/misconceptions-with-test-driven-development.html
http://collaboration.csc.ncsu.edu/laurie/Papers/TDDpaperv8.pdf

http://agilepainrelief.com/notesfromatooluser/2008/11/misconceptions-with-test-driven-development.html
http://collaboration.csc.ncsu.edu/laurie/Papers/TDDpaperv8.pdf

Testing in the industry

▪ Is testing actually and actively used in the industry?

▪ If there is a company that does not actively test their product
with multiple levels, DO NOT USE their products and DO NO
T WORK for them

22

Definitely YES

Is testing used in the industry?

▪ Software testing engineer
▪ Responsible for designing and implementing test procedures to
ensure that software programs work as intended

▪ Mostly hired by software development companies
▪ Ensure that products perform to specifications before being released

▪ Software test from software engineer
▪ Google recommends a certain coverage with unit tests for the team’s
code
▪ When we code something, we usually make suitable tests together

▪ Google development tools also provide several testing when
before/after we submit our codes

23

Testing – when do we need to test?

24

Testing – levels

25

Code

Design

Requirements

System Engineering

Unit Testing

Integration Testing

Validation Testing

System Testing

Abs
tra

ct
to

co
nc

ret
e

Narr
ow

 to

Broa
de

r s
co

pe

Testing – levels

▪ Unit testing
▪ Concentrates on each component/function of the software as
implemented in the source code

▪ Integration testing
▪ Focuses on the design and construction of the software architecture

▪ Validation testing
▪ Requirements are validated against the constructed software

▪ System testing
▪ The software and other system elements are tested as a whole

26

Testing – levels

▪ Unit testing
▪ Exercises specific paths in a component's control structure to ensure
complete coverage and maximum error detection

▪ Components are then assembled and integrated

▪ Integration testing
▪ Focuses on inputs and outputs, and how well the components fit together
and work together

▪ Validation testing
▪ Provides final assurance that the software meets all functional, behavioral,
and performance requirements

▪ System testing
▪ Verifies that all system elements (software, hardware, people, databases)
mesh properly and that overall system function and performance is achieved

27

Testing – approaches

▪ The “box” approach
▪ White-box testing

▪ Uses the control structure part of component-level design to derive the test cases

▪ Black-box testing
▪ Focuses on the functional requirements and the information domain of the

software
▪ The tester identifies a set of input conditions that will fully exercise all functional

requirements for a program

▪ Static, dynamic, etc.

28

Testing – types, techniques, and tactics

▪ Alpha testing
▪ Carried out by the test team within the developing organization

▪ Beta testing
▪ Performed by a selected group of friendly customers

▪ Acceptance testing
▪ Performed by the customer to determine whether to accept or reject
the delivery of the system

▪ Performance testing, stress testing, volume testing, config.
testing, compatibility testing, regression testing, maintenance
testing, usability testing, etc

29

Testing – unit testing tools

▪ Java
▪ NUnit, Junit, TestNG, Mockito, and PHPUnit

▪ Python
▪ Robot, PyTest, Unittest, DocTest, Nose2, and Testify

▪ C/C++
▪ Googletest, Boot Test Library, QA Systems Cantata, Parasoft C/C++
test, Microsoft Visual Studio, Cppunit, Catch, Bandit, and CppUTest

▪ JavaScript
▪ Jest, Mocah, Storybook, Jasmine, Cypress, Puppeteer, Testing Library,
and WebdriverIO

30

Googletest framework

31

Googletest framework overview

▪ A unit testing library for the C++ programming language.
▪ Repository
▪ http://code.google.com/p/googletest/

▪ Projects using Google Test
▪ Android Open Source Project operating system
▪ Chromium projects (behind the Chrome browser, Edge browser, and
Chrome OS)

▪ LLVM compiler
▪ Protocol Buffers (Google’s data interchange format)
▪ OpenCV computer vision library
▪ Several internal C++ projects at Google

32

http://code.google.com/p/googletest/

Googletest framework overview

▪ Study materials
▪ README file: https://github.com/google/googletest/blob/master/RE
ADME.md

▪ Googletest user’s guide: https://google.github.io/googletest/
▪ Whittaker, James (2012). How Google Tests Software. Boston,
Massachusetts: Pearson Education. ISBN 0-321-80302-7.

▪ A quick introduction to the Google C++ Testing Framework,
Arpan Sen, IBM DeveloperWorks, 2010-05-11

33

Let’s briefly look at this

Then, let’s look at the example in Visual Studio 2019

https://github.com/google/googletest/blob/master/README.md
https://google.github.io/googletest/
https://www.amazon.com/Google-Tests-Software-James-Whittaker/dp/0321803027
https://developer.ibm.com/articles/au-googletestingframework/

▪ Target code: prototype for square-root

▪ Test case with Googletest

Creating a basic test

34

double square-root (const double);

#include "gtest/gtest.h"

TEST (SquareRootTest, PositiveNos) {
EXPECT_EQ (18.0, square-root (324.0));
EXPECT_EQ (25.4, square-root (645.16));
EXPECT_EQ (50.3321, square-root (2533.310224));

}
TEST (SquareRootTest, ZeroAndNegativeNos) {

ASSERT_EQ (0.0, square-root (0.0));
ASSERT_EQ (-1, square-root (-22.0));

}

Creating a basic test

35

#include "gtest/gtest.h"

TEST (SquareRootTest, PositiveNos) {
EXPECT_EQ (18.0, square-root (324.0));
EXPECT_EQ (25.4, square-root (645.16));
EXPECT_EQ (50.3321, square-root (2533.310224));

}
TEST (SquareRootTest, ZeroAndNegativeNos) {

ASSERT_EQ (0.0, square-root (0.0));
ASSERT_EQ (-1, square-root (-22.0));

}

Test hierarchy name Unit test namePredefined macro in gtest.h

Predefined macros that
checks result of squar
e-root function

double square-root (const double);

Assertions

▪ Google Test assertions are macros that resemble function calls.
▪ You test a class or function by making assertions about its beha
vior.

▪ EXPECT_*
▪ Non fatal assertion.
▪ Versions generate nonfatal failures.
▪ Test will be continued even if the assertion is not satisfied.

▪ ASSERT_*
▪ Fatal assertion.
▪ Versions generate fatal failures when they fail, and abort the current func
tion.

▪ Test will directly fail if the assertion is not satisfied.

36

Assertions

37

Fatal assertion Nonfatal assertion Verifies

ASSERT_TRUE(condtion); EXPECT_TRUE(condtion); Condition is true

ASSERT_FALSE(condition); EXPECT_FALSE(condition); Condition is false

▪ Basic assertions

Assertions

38

Fatal assertion Nonfatal assertion Verifies

ASSERT_EQ(expected,
actual);

EXPECTED_EQ(expected,
actual);

expected == actual

ASSERT_NE(val1, val2); EXPECT_NE(val1, val2); val1 != val2

ASSERT_LT(val1, val2); EXPECT_LT(val1, val2); val1 < val2

ASSERT_LE(val1, val2); EXPECT_LE(val1, val2); val1 <= val2

ASSERT_GT(val1, val2); EXPECT_GT(val1, val2); val1 > val2

ASSERT_GE(val1, val2); EXPECT_GE(val1, val2); val1 >= val2

▪ Binary comparison

Assertions

39

▪ Assertions for other types
▪ Strings

▪ Case sensitive
▪ {ASSERT | EXPECT}_STREQ(str1, str2);
▪ {ASSERT | EXPECT}_STRNE(str1, str2);

▪ Ignoring case
▪ {ASSERT | EXPECT}_STRCASEEQ(str1, str2);
▪ {ASSERT | EXPECT}_ STRCASENE(str1, str2);

▪ Double and floating point values
▪ {ASSERT | EXPECT}_FLOAT_EQ(expected, actual);
▪ {ASSERT | EXPECT}_DOUBLE_EQ(expected, actual);
▪ {ASSERT | EXPECT}_NEAR (expected, actual, absolute_range);

Running the test – main function

40

int main(int argc, char ∗∗argv) {
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();

}

• Initialize the framework
• Must be called before RUN_ALL_TESTS

• Must be called only once
• Multiple calls to it conflicts some features of the framework

• Automatically detects and runs all test tests defined using the TEST macro

Running the test – result

41

Running main() from user_main.cpp
[==========] Running 2 tests from 1 test case.
[----------] Global test environment set-up.
[----------] 2 tests from SquareRootTest
[RUN] SquareRootTest.PositiveNos
..\user_sqrt.cpp(6862): error: Value of: sqrt (2533.310224)

Actual: 50.332
Expected: 50.3321
[FAILED] SquareRootTest.PositiveNos (9 ms)
[RUN] SquareRootTest.ZeroAndNegativeNos
[OK] SquareRootTest.ZeroAndNegativeNos (0 ms)
[----------] 2 tests from SquareRootTest (0 ms total)

[----------] Global test environment tear-down
[==========] 2 tests from 1 test case ran. (10 ms total)
[PASSED] 1 test.
[FAILED] 1 test, listed below:
[FAILED] SquareRootTest.PositiveNos

1 FAILED TEST

Test fixtures

▪ Help you set up common and custom se ups that tests ne
ed.
▪ It is typical to do some custom initialization work before executing
a unit test.

▪ E.g., If you are trying to measure the time/memory footprint of a t
est, you need to put some test-specific code in place to measure t
hose values.

42

A test fixture class

43

class myTestFixture1: public ::testing::Test {
public:

myTestFixture1() {
// initialization code here

}

void SetUp() {
// code here will execute just before the test ensues

}

void TearDown() {
// code here will be called just after the test completes
// ok to through exceptions from here if need be

}

~myTestFixture1() {
// cleanup any pending stuff, but no exceptions allowed

}

// put in any custom data members that you need
};

Defined in gtest.h

A test fixture class

▪ Initialization or allocation
▪ In either the constructor or the SetUp method.

▪ Deallocation of resources
▪ Either in TearDown or the destructor routine.
▪ If you want exception handling you must do it only in the TearDo
wn code
▪ Throwing an exception from the destructor results in undefined behavior.

▪ Fixture class scope
▪ The same test fixture is not used across multiple tests.
▪ For every new unit test, the framework creates a new test fixture.

44

Test with fixture

▪ Using TEST_F instead of TEST.

45

TEST_F (myTestFixture1, UnitTest1) {
…

}

TEST_F (myTestFixture1, UnitTest2) {
…

}

Advanced features

▪ More advanced features are available
▪ More assertions.
▪ Skipping test exectuion.
▪ Teaching googletest how to print your values.
▪ Death tests
▪ Logging additional information
▪ Value-parameterized tests

Please look at “Advanced Topics” at “Googletest user’s guide
”.

46

http://google.github.io/googletest/advanced.html
http://google.github.io/googletest/

Python unittest library

47

Python unittest overview

▪ A module in the Python standard library that provides various auto
mations for testing

▪ Main concepts
▪ TestCase: basic unit for tests in the unittest framework
▪ Test suite: a set of test cases
▪ Fixture
▪ Codes that will be performed before and after test functions
▪ It is useful to check whether the testing environment is well established before

performing the actual test
▪ It is also used to build database or tables and clean up resources before/after testing

▪ Assertion
▪ It determines whether each unit test passes
▪ It provides various checkers, including bool tests, validities of instances and exception

handlings
▪ Tests will fail when assertion fails

48

Assertions

49

Statement Meaning Statement Meaning

assertEqual(a, b) a == b assertNotEqual(a, b) a != b

assertTrue(x) bool(x) is True assertFalse(x) bool(x) is False

assertis(a, b) a is b assertIsNot(a, b) a is not b

assertIsNone(x) x is None assertIsNotNone(x) x is not None

assertIn(a, b) a in b assertNotIn(a, b) a not in b

assertIsInstance(a, b) isinstance(a, b) assertNotIsInstance(a, b) not instance(a, b)

Python unittest overview

1. Import unittest module
2. Create a subclass of “unittest.TestCase”
3. Make a test method with the name “test*”. Add self.assert*()

to check the result.
4. Call unittest.main() to run the test

50

Python unittest (simple example)

51

myCalc.py
def add(a, b):

return a + b

def substract(a, b
):

return a - b

Python unittest (simple example)

52

tests.py
import unittest
import myCalc

class MyCalcTest(unittest.TestCase):

def test_add(self):
c = myCalc.add(20, 10)
self.assertEqual(c, 30)

def test_substract(self):
c = myCalc.substract(20, 10)
self.assertEqual(c, 10)

if __name__ == '__main__':
unittest.main()

Python unittest (Test fixture)

53

myUtil.py
import os

def filelen(filename):
f = open(filename, "r")
f.seek(0, os.SEEK_END)
return f.tell()

def count_in_file(filename, char_to_find):
count = 0
f = open(filename, "r")
for word in f:

for char in word:
if char == char_to_find:

count += 1
return count

Python unittest (Test fixture)

54

import unittest
import os
import myUtil

class MyUtilTest(unittest.TestCase):
testfile = 'test.txt’

Fixture
def setUp(self):
f = open(MyUtilTest.testfile, 'w')
f.write('1234567890')
f.close()

def tearDown(self):
try:
os.remove(MyUtilTest.testfile)

except:
pass

def test_filelen(self):
leng = myUtil.filelen(

MyUtilTest.testfile)
self.assertEqual(leng, 10)

def test_count_in_file(self):
cnt = myUtil.count_in_file(

MyUtilTest.testfile, '0')
self.assertEqual(cnt, 1)

if __name__ == '__main__':
unittest.main()

Conclusion

55

Conclusion

We looked at the following items
▪ Software testing
▪ Why testing is necessary
▪ Kinds of testing

▪ Introduce Googletest sframework
▪ Googletest framework – Unit testing framework for C++
▪ Example

▪ Introduce Python unittest framework
▪ Python unittest framework – Unit testing library in Python
▪ Example

56

