
Fine-Grained Function Visibility
for Multiple Dispatch with Multiple Inheritance

Jieung Kim1, Sukyoung Ryu2, Victor Luchangco3, and Guy L. Steele Jr.3

1 Department of Computer Science, Yale University
2 Department of Computer Science, KAIST

3 Oracle Labs

Abstract. Object-oriented languages with multiple dispatch and multiple inheri-
tance provide rich expressiveness but statically and modularly checking programs
in such languages to guarantee that no ambiguous calls can occur at run time
has been a difficult problem. We present a core calculus for Fortress, which pro-
vides various language features—notably functional methods and components—
and solves the problem. Functional methods are declared within traits and may
be inherited but are invoked by ordinary function calls, and therefore compete in
overloading resolution with ordinary function declarations. A novel component
system governs “visibility” of types and functions, and allows fine-grained con-
trol over the import of overloaded functions. We formally define the type system
of Fortress with a set of static rules to guarantee no ambiguous calls at run time,
and mechanize the calculus and its type safety proof in COQ.

1 Introduction

A longstanding problem for systems that support multiple inheritance is what to do
when a method is invoked on an object that inherits that method from multiple par-
ents: which inherited method should be executed? More generally, when a method or a
function (collectively called functional) is overloaded—that is, there are multiple dec-
larations of the same name—which declaration should be used when the functional is
invoked? Intuitively, we want to use the most specific declaration that is applicable to
the call. But there might not be a unique most-specific declaration: There may be two (or
more) applicable declarations that are more specific than any of the other declarations
but incomparable with each other. In this case, we say the invocation is ambiguous.
Guaranteeing that there will be no ambiguous calls at run time is difficult in object-
oriented languages because some declarations that are applicable at run time might not
be applicable statically.

Castagna et al. [4] address this problem by requiring that the signatures (i.e., the pa-
rameter types) of overloaded functional declarations form a meet-bounded lattice. This
approach has been taken by several languages that support multiple dispatch and mul-
tiple inheritance, such as MultiJava [7], Cecil [5], and Dubious [14]. We have followed
this approach in the Fortress programming language [1], in which this requirement is
called the Meet Rule, and our experience is that it feels natural in practice, and that
checking it statically helps expose programming errors.

C.-c. Shan (Ed.): APLAS 2013, LNCS 8301, pp. 156–171, 2013.
c© Springer International Publishing Switzerland 2013

Fine-Grained Function Visibility for Multiple Dispatch with Multiple Inheritance 157

However, checking this condition statically is complicated by modularity: Fortress
programs are partitioned into modules, each of which must import functionality from
other modules that it wants to use. Fortress allows fine-grained control over the im-
port of not only type declarations but also overloaded functional declarations, so that
different modules may see different sets of declarations for a given functional. Thus,
calls with the exact same arguments but from different components to dispatch to dif-
ferent functionals. In contrast, prior languages avoid this complication by sacrificing
fine-control over importing functional declarations: in these languages, either all or
none of the overloaded declarations of a functional is visible in any given program
scope [2,3,5,7,11].

Fortress provides a novel solution to the “operator method problem”: functional
methods [2]. A functional method may designate any argument, not just the textually
leftmost, to be treated as the “dispatch target” or “receiver” so that it can enjoy a func-
tion call syntax. Functional methods are inherited like conventional dotted methods
but have the visibility of top-level functions (i.e., they are in the top-level scope of a
module). Thus, they can (and must) be imported to be used in a different module, giv-
ing programmers the same fine-grained control for functional methods as for top-level
functions. (For this reason, we often find ourselves preferring functional methods to
dotted methods in Fortress.) However, the expressive power of functional methods does
not come for free. Allowing a functional method to designate any argument as the re-
ceiver enlarges the set of overloaded declarations among which the most specific one
is chosen. Selectively importing operator (functional method) declarations requires that
functional methods be overloaded with top-level functions, which adds complexity to
the static checks to guarantee the existence of the single most specific one among them.

In this paper, we extend the state of the art in statically typed object-oriented lan-
guages with symmetric multiple dispatch and multiple inheritance by allowing each set
of overloaded functional declarations to have its own visibility via fine-grained imports.
We present a core calculus of Fortress in which a program can be divided into compo-
nents that can be modularly type-checked, such that the components provide complete
namespace control over all top-level names; names of not only types, but also over-
loaded functions and functional methods, may be selectively imported. The Meet Rule
makes possible a modular static checking of multimethod dispatch that enables sepa-
rate compilation. We used COQ [8] to mechanize the calculus to prove the soundness
of its type system, guaranteeing that there are no ambiguous calls at run time. Our COQ

mechanization of the calculus and type soundness proof is publicly available [10].

2 Fortress Language Features

In this section, we describe the language features of Fortress relevant to overloading,
dispatch and fine-grained namespace control, and the rules that enable modular type
checking.

2.1 Traits and Objects for Multiple Inheritance

Fortress organizes objects into a multiple-inheritance hierarchy based on traits [19].
It may be helpful to think of a Fortress trait as a Java interface that can also contain

158 J. Kim et al.

concrete method declarations, and to think of a Fortress object declaration as a Java final
class. Fortress objects inherit only from traits, not other objects, and fields are not inher-
ited. Both traits and objects may contain method declarations, and may inherit method
declarations from multiple supertraits (traits that they extend). Thus all traits and objects
form a multiple inheritance hierarchy, a partial order defined by the extends relation-
ship, in which all objects are at the leaves as in Sather [22]. By separating types into
traits and objects, Fortress supports multiple inheritance without suffering from con-
flicts between inherited fields. As in Java and similar statically typed object-oriented
languages, the name of a trait or object serves as the name of a type, which is the set of
all objects at or below the named position in the trait hierarchy.

2.2 Three Kinds of Functionals for Multiple Dispatch

We consider three kinds of functionals in Fortress: i) traditional dotted methods associ-
ated with objects, ii) top-level functions not associated with any objects as in C++ [21],
and iii) functional methods. As in Java, dotted methods are invoked with a dotted
method call of the form “e.m(e1, . . . , en)” while top-level functions and functional
methods are invoked with a functional call of the form “m(e1, . . . , en)” without any
dot. Dotted methods and functional methods are collectively called methods; top-level
functions and functional methods are collectively called functions.

Functionals may be overloaded; that is, several methods within an object, and sev-
eral functions declared in the same scope, may have the same name. This raises the
issue of overload resolution: at run time, we must resolve the overloading to determine
what code to execute for each functional call. Typically, overloading is resolved by
dispatching to the most specific functional declaration from among those declarations
that are accessible and applicable, where declarations are compared by their parameter
types. With symmetric multiple dispatch, the types of all the parameters of a functional
declaration are considered equally in this comparison.

In an early report [2], we considered a restriction of Fortress in which top-level func-
tions and functional methods could not be overloaded. Removing this restriction intro-
duced some new issues, which we address in this paper. (Fortress does not allow dotted
methods to be overloaded with functional methods or top-level functions, so we do not
consider this case in this paper. However, if, within the body of a trait or object, dotted
methods could be invoked by functional calls and overloaded with top-level functions
and/or functional methods, we can handle this case by considering every dotted method
declaration to also declare a function whose parameters do not include the receiver,
and include this function in the set of candidates that must satisfy the overloading rules
described in Section 2.4.)

2.3 Components and Selective Imports for Modularity

A program can be divided into modules that can be compiled separately, and provide
a form of namespace control. In Fortress, these modules are called components, which
can contain declarations of top-level functions, traits, and objects; trait and object dec-
larations may contain dotted methods and functional methods. A component may selec-
tively import type names and function names from other components. One of the main

Fine-Grained Function Visibility for Multiple Dispatch with Multiple Inheritance 159

component IntegerToString

trait Int

asString() = “-” ‖ (− self).asString()

end

trait Nat extends Int

asString() =

if self < 10

then “0123456789”[self : self]
else

q = self÷ 10

r = self− 10 q

q.asString() ‖ r.asString()

end

end

end IntegerToString

component IntegerToStringFunction

trait Int end

trait Nat extends Int end

asString(x: Int) =

“-” ‖ asString(−x)

asString(x:Nat) =

if x < 10

then “0123456789”[x :x]

else

q = x÷ 10

r = x− 10 q

asString(q) ‖ asString(r)

end

end IntegerToStringFunction

Fig. 1. Overloaded dotted methods (left) and top-level functions (right)

contributions of this paper is to explain how the overloading checks and the overloading
resolution safely interact with the namespace control imposed by components.

Let Int and Nat name the types whose members consist of the integers and nat-
ural numbers (i.e., nonnegative integers) respectively. Thus, Nat is a subtype of Int .
Then they may be implemented in the component IntegerToString as illustrated in
the left side of Figure 1 (shown only in part; they might define other methods) where
‖ denotes string concatenation, self denotes the receiver object (like this in Java),
and “0123456789”[self : self] denotes indexing of the string, a linear sequence
of characters, with a range of size 1. Note the members of Int are the members of Nat
plus all the negative integers. The method asString is implemented as an overloaded
method: if the receiver object is nonnegative, then the declaration in Nat is used be-
cause it is more specific, but if the receiver object is negative, then the declaration in
Int is used because the one in Nat is not applicable. Both declarations are part of the
intended algorithm for converting a value of type Int to a string.

Now consider the same example using top-level functions rather than dotted methods
as in the right side of Figure 1. When another component M imports the component,
every function declaration and every method declaration is, in effect, required to defer
(that is, possibly dispatch) to other functions or methods that are accessible within com-
ponent M , applicable to the arguments received, and more specific than the function or
method declaration.

Finally, the example in Figure 2 uses functional methods rather than dotted meth-
ods or top-level functions. Functional methods are inherited like dotted methods—most
importantly, abstract functional methods, carrying the obligation to provide concrete
implementations, are inherited like abstract dotted methods. But they are overloaded

160 J. Kim et al.

component IntegerToStringFunctionalMethod

trait Int

asString(self) = “-” ‖ asString(− self)

end

trait Nat extends Int

asString(self) =

if self < 10 then “0123456789”[self : self]
else

q = self÷ 10

r = self− 10 q

asString(q) ‖ asString(r)

end

end

end IntegerToStringFunctionalMethod

Fig. 2. Overloaded functional methods

component MyProgram

import IntegerToStringFunctionalMethod.{ asString }
asString(x : Boolean): String = if x then “true” else “false” end

run() = println (asString (42))

end MyProgram

Fig. 3. Main component importing overloaded functional methods

in the same per-component namespace as top-level functions, and the dispatch model
that works for top-level functions while preserving component modularity also works
for functional methods. Thus, we often find ourselves preferring functional methods to
other functionals in Fortress.

We might then have another component that can be run as a “main program”,
which imports only the asString functional method from
IntegerToStringFunctionalMethod as shown in Figure 3. Note that the imported
asString functional method is overloaded with the top-level asString function in the
importing component. As the example shows, fine-grained imports of functionals affect
which functional to invoke at run time.

2.4 Static Overloading Rules

To guarantee type safety in the presence of all the features described so far, we place
static restrictions on overloaded functional declarations. We require every pair of over-
loaded functional declarations to satisfy the following two properties:

Fine-Grained Function Visibility for Multiple Dispatch with Multiple Inheritance 161

1. The Subtype Rule
Whenever the parameter type of one is a subtype of the parameter type of the other,
the return type of the first must also be a subtype of the return type of the second.

2. The Meet Rule
Whenever the parameter types of the two declarations have a common lower bound
(i.e., a common subtype), there is a unique declaration for the same functional
whose parameter type is the greatest lower bound of the parameter types of the two
declarations.

The flip side of the Meet Rule is this:

3. The Exclusion Rule
Whenever the parameter types of two declarations are disjoint, the pair is a valid
overloading.

Based on our experience with Fortress, these rules are not difficult to obey, especially
because the compiler gives useful feedback.

While the Subtype Rule and the Meet Rule are necessary for type soundness, the
Exclusion Rule enlarges a set of valid overloading. Fortress allows programmers to de-
clare that two traits exclude each other (that is, no object can belong to both traits) and
it also provides structural exclusion relationships. Each object type implicitly excludes
every other object type because no object can extend them; an object type implicitly
excludes types that are not its ancestors in the trait hierarchy. Also, a type of one pa-
rameter list excludes a type of another parameter list, if the sizes of the parameter lists
are different, or any of their constituent types at the same position exclude each other.
For simplicity, we consider only structural exclusion relationships rather than declared
exclusion relationships in this paper. For details of a type system that handles declared
exclusion relationships, see [3].

Checking the overloading rules consists of two parts: the overloaded methods in a
trait are checked for validity, and overloaded top-level functions and functional meth-
ods in a component are checked for validity. In earlier work, we proposed an informal
description of such overloading rules only for top-level functions and functional meth-
ods where top-level functions and functional methods may not be overloaded [2], and
we proved that the overloading rules guarantee no ambiguous calls at run time [11]. In
this paper, we present a system which allows overloading between top-level functions
and functional methods, and fine-grained namespace control via modules and selective
imports in Section 3, and we mechanize the system and the proof of its type soundness
property in COQ in Section 4.

3 Calculus: MFFMM

We now define MFFMM (Modular Featherweight Fortress with Multiple dispatch and
Multiple inheritance), a core calculus for Fortress. Due to space limitations, we describe
only its central parts in prose in this section. The full syntax and semantics of MFFMM
are available in our companion report [12].

162 J. Kim et al.

p ::= comp importM.{i} d e

comp ::= componentM importM.{i} d end

i ::= C | m
d ::= td | od | fd

td ::= trait T extends {T}md end

od ::= object O(f : C) extends {T} md end

fd ::= m(x: C): C= e

md ::= m(x: C self? x: C): C= e

e ::= x | self | OM (e) | e.f | e.m(e) | mM(e)

Fig. 4. Syntax of MFFMM

3.1 Syntax and Adjustments for Components

The syntax of MFFMM is shown in Figure 4. The metavariables M ranges over com-
ponent names; T ranges over trait names; O ranges over object names; C ranges over
trait and object names; m ranges over function and method names; f ranges over field
names; and x ranges over method and function parameter names. We write x as short-
hand for a possibly empty sequence x1, · · · , xn.

A program p is a sequence of component declarations followed by a designated
“main” component. A component declaration consists of its name M , a sequence of
import statements, and a sequence of top-level declarations. The main component is
different from the other components in that it does not specify a name and it has a
top-level expression denoting the “run ” function of the program. For simplicity, we
assume that the name of the main component isMc, and it must not be the name of any
other component. An import statement may import a set of imported items; an imported
item is either a type name C or a (possibly overloaded) function name m. A top-level
declaration may be a trait declaration, an object declaration, or a function declaration.

A trait or object declaration may extend multiple supertraits; it inherits the methods
provided by its extended traits. It may include method declarations; a method declara-
tion is either a dotted method declaration or a functional method declaration depending
on the absence or presence of self in its parameter list. An object declaration may
include field declarations as its value parameters. Traits and objects are collectively
called types. While dotted methods in a type may be overloaded with only other dotted
methods in the same type, functional methods in a type may be overloaded with not
only other functional methods in the same type but also other functional methods and
top-level functions in the component textually enclosing the type. Note that a dotted
method may not be overloaded with a functional method nor with a top-level function.

An expression is either a variable reference, an object construction, a field access, a
method invocation, or a function call. A variable reference is either a parameter name x
or self . Note that the object name in an object construction and the function name in a
function call are annotated by a component nameM . As we discuss below, evaluation of
a program consists of evaluation of expressions in various components, and evaluating
an expression requires the component name textually enclosing the expression.

Fine-Grained Function Visibility for Multiple Dispatch with Multiple Inheritance 163

component MatrixLibrary

trait Matrix extends {Object} end

object UnitMatrix() extends {Matrix} end

end

component MyMatrixLibrary

import MatrixLibrary.{Matrix}
object UnitMatrix() extends {Matrix} end

object GenUnitMatrix() extends {Object}
gen(): UnitMatrix = UnitMatrix()

end

end

import MatrixLibrary.{Matrix,UnitMatrix}
import MyMatrixLibrary.{GenUnitMatrix}
asString(x:Matrix): String = “Matrix”
asString(x:UnitMatrix): String = “UnitMatrix”

asString
(
GenUnitMatrix().gen()

)

Fig. 5. MFFMM program before the annotation phase

To support the component system with selective imports, MFFMM uses: i) anno-
tations of enclosing component names on function calls and object constructions and
ii) actualTyp(M,C), a pair of the type C appearing in M and its defining compo-
nent, rather than C to take into account the component M in which the type C is de-
fined. When a program consists of multiple components, evaluation of the program
may require evaluation of the expressions in other components than the main compo-
nent. Consider the example in Figure 5 where the object UnitMatrix in the compo-
nent MatrixLibrary and the object UnitMatrix in the componentMyMatrixLibrary
are distinct types. The main component includes asString

(
GenUnitMatrix().gen()

)

which evaluates to asString
(
UnitMatrix()

)
. Note that UnitMatrix here is the object

defined in MyMatrixLibrary rather than in MatrixLibrary while the imported type
UnitMatrix is imported from MatrixLibrary rather than from MyMatrixLibrary .

In order to evaluate the function call correctly, we need two pieces of information.
First, we need to know in which component the function call of asString textually ap-
pears to collect a set of accessible (or visible) function declarations for the function call
to decide which function to call. Secondly, we need to know in which component the
object construction GenUnitMatrix() textually appears to know the argument type
of the function call to decide which function to call. Such information is syntactically
available and a simple preprocessing phase can annotate each function call and object
construction with its textually enclosing component name. The annotated component
names on function calls and object constructions denote the actual use sites of the func-
tions and objects. For example, the preprocessing phase rewrites the gen method dec-
laration in the object GenUnitMatrix as follows:

gen(): UnitMatrix = UnitMatrixMyMatrixLibrary()

164 J. Kim et al.

and the function call in the main component as follows:

asStringMc
(
GenUnitMatrixMc().gen()

)

At run time, one step evaluation of the call would lead to the following:

asStringMc
(
UnitMatrixMyMatrixLibrary()

)

which allows to select the correct function declaration to call:

asString(x: Matrix): String = “Matrix”

and evaluates to “Matrix ” as desired.
As the example shows, MFFMM allows programmers to define types with the same

name if they are in different components. While they do not produce any name conflicts
syntactically, they may lead to name conflicts during type checking; types that are not
defined nor imported by a component may not be explicitly used by the programmer
but they may be implicitly available during type checking. For example, even though
UnitMatrix inMyMatrixLibrary is not explicitly imported by the main component, it
is available for type checking GenUnitMatrixMc().gen() . Thus, type names are not
enough for identifying types but a pair of a type name and its defining component name
can serve as a true identity for a type.

3.2 Static Semantics and Overloading Rules

In this section, we describe only the key rules of the static semantics especially for
checking valid overloading; the full semantics is available in our companion report [12].
Type checking a program consists of checking its constituent component declarations
and checking import statements, top-level declarations, overloaded functions, and the
top-level expression of the main component. Checking function declarations consists
of three parts: checking every pair of distinct declarations between top-level functions,
between top-level functions and functional methods, and between functional methods.

Two top-level function declarations are valid if they satisfy any of the overloading
rules: if their parameter types are disjoint, if one parameter type is more specific than
the other, or if there exists a tie-breaking declaration between them.

A top-level function declaration and a functional method declaration in the same
component may be a valid overloading if their parameter types are disjoint or the func-
tional method declaration is more specific than the top-level function declaration. In
other words, there must not be any top-level function whose signature is more specific
than that of an overloaded functional method. The reason for this additional restriction
is that for functional methods (unlike for top-level functions), we cannot statically deter-
mine all the declarations that are dynamically applicable. (Indeed, this is the reason the
overloading rules are defined as they are, rejecting some sets of overloaded declarations
even though there is no static ambiguity.)

For example:

componentMoreSpecificTopLevel

trait Matrix extends {Object}

Fine-Grained Function Visibility for Multiple Dispatch with Multiple Inheritance 165

multiply(self, z:Object) = “In Matrix”
end

object SparseMatrix() extends {Matrix}
multiply(self, z:Z) = “In SparseMatrix”

end

multiply(m:Matrix, z:Z) = “At Top-Level”
double(m:Matrix) = multiply (m, 2)

run() = double (SparseMatrix())

end MoreSpecificTopLevel

the signatures of the functional declarations above are as follows:

multiply(m: Matrix, z:Object) // functional method from Matrix

multiply(m: SparseMatrix, z:Z) // functional method from SparseMatrix

multiply(m: Matrix, z:Z) // top-level function

Because the static type of the first argument m of the function call multiply (m, 2) is
Matrix, the functional method declared in SparseMatrix is not statically applicable to
the call. Among the other two applicable declarations, the top-level function is the most
specific statically applicable one. However, at run time, because m is SparseMatrix,
the functional method declared in SparseMatrix is also applicable to the call and it
is even the most specific one. Therefore, if we allow top-level functions to be more
specific than their overloaded functional methods, we need to consider not only the top-
level functions but also the functional methods and more specific functional methods
overriding them at run time, which burdens the performance of dynamic dispatch.

Instead, if we require functional method declarations be more specific than the over-
loaded top-level function declarations, the overloaded declarations in the above example
are invalid. Let us consider the slightly revised example:

component LessSpecificTopLevel

trait Matrix extends {Object}
multiply(self, z:Z) = “In Matrix”

end

object SparseMatrix() extends {Matrix}
multiply(self, z:Z) = “In SparseMatrix”

end

multiply(m:Matrix, z:Object) = “At Top-Level”
double(m:Matrix) = multiply (m, 2)

run() = double (SparseMatrix())

end LessSpecificTopLevel

Now the signatures of the overloaded declarations are as follows:

multiply(m: Matrix, z:Z) // functional method from Matrix

multiply(m: SparseMatrix, z:Z) // functional method from SparseMatrix

multiply(m: Matrix, z:Object) // top-level function

166 J. Kim et al.

Among the applicable declarations to the call multiply (m, 2) , the functional method
declared in Matrix is the most specific statically applicable one. Because we restrict
top-level functions from being more specific than any overloaded functional method,
for any call to which both a top-level function and a functional method are applica-
ble (statically or dynamically), the top-level function will never be the most specific
dynamically applicable declaration: there will always be some dynamically applicable
functional method declaration that is more specific (because of the Meet Rule). Thus,
at run time, we need to consider only the functional method and the more specific func-
tional methods overriding it without considering any top-level functions, which largely
reduces the set of the candidate methods to investigate.

Finally, two functional methods in a component which may be defined in different
types are valid if the parameter types of them are disjoint or they have self in the same
position of their parameter lists. When types A and B provide a functional method with
the same name and self in the same position, and another type C extends both A and
B inheriting both functional methods, then C itself should provide a disambiguating
definition, and this is checked by the overloading rules when compiling C, because at
that point, the declarations in both A and B are visible (since C extends both A and B).

To see why we need this requirement for the self position, consider the following
Matrix and Vector example:

trait Matrix extends {Object}
multiply(self, y: Vector) = “In Matrix”

end

trait Vector extends {Object}
multiply(x: Matrix, self) = “In Vector”

end

Since both functional method declarations have the same signature, any call to multiply
with two arguments of types Matrix and Vector is ambiguous. For example:

object MatrixVector extends {Matrix, Vector} end

because MatrixVector is both Matrix and Vector , the following call is ambiguous:

multiply(MatrixVector,MatrixVector)

because both functional method declarations from Matrix and Vector are accessible,
applicable, and equally specific. With the restriction of the same position for self ,
all the functional method declarations in a valid overloading set whose parameter types
are not disjoint have the self parameter in the same position and the type of self

is its enclosing trait. Therefore, we can guarantee that a functional method declaration
chosen with more specific argument types is defined in a subtype of the owner of a
functional method declaration chosen with less specific argument types.

3.3 Dynamic Semantics and Functional Dispatch

Evaluation of a method invocation OM (v).m(v′) is conventional except that we first
find the component M ′ that defines O by actualTyp(M,O), which effectively com-
putes visibility from M . Among a set of visible dotted methods in O defined in M ′,

Fine-Grained Function Visibility for Multiple Dispatch with Multiple Inheritance 167

we collect a set of applicable methods to the call using the dynamic types of the argu-
ments, and select the most specific one from the set.

Due to the unique characteristic of functional methods, evaluation of a function call
mM (v) requires an additional step to find the most specific functional declaration.
Among a set of visible functionals in M , we first collect a set of applicable functionals
to the call using the dynamic types of the arguments, just like for the method invocation
case. Then, if the candidate set consists of only top-level functions, we simply select
the most specific one from the set. However, if the candidate set includes any functional
method declaration, we collect yet another set of visible functional method declarations
from the enclosing trait of the functional method declaration. We then perform the sec-
ond dispatch by collecting a set of applicable functional method declarations from the
set and selecting the most specific one from the set.

Let us revisit the multiply example in Section 3.2 one more time. For the func-
tion call multiply (m, 2) , the static types of the arguments are (Matrix,Z) and the
dynamic types of the arguments are (SparseMatrix,Z) . While the signatures of the
statically applicable declarations are as follows:

multiply(m: Matrix, z:Z) // functional method from Matrix

multiply(m: Matrix, z:Object) // top-level function

the signatures of the dynamically applicable declarations include the following as well:

multiply(m: SparseMatrix, z:Z) // functional method from SparseMatrix

Because the dynamically applicable declarations include functional method declara-
tions, we collect a set of visible functional method declarations from Matrix and
SparseMatrix so that we do not miss any functional method declarations that are not
visible at compile time but are visible at run time. Because we collect visible func-
tional method declarations from static types at compile time and from dynamic types at
run time, and because run-time types are more specific than compile-time types, more
functional method declarations may be visible at run time. Then, we perform the second
dispatch by collecting a set of applicable functional method declarations from the set
and selecting the most specific one from the set.

This dispatch mechanism always selects the unique most specific function to each
call. First, if the applicable functional set for a function call has no functional meth-
ods, all the candidates in the set are top-level functions, and the validity of top-level
function overloading guarantees that there always exists the most specific function for
the call. Secondly, if the applicable functional set for a function call has more than one
functional methods, the functional methods are more specific than any of the top-level
functions in the set and the most specific one from the set is a functional method. Note
that because the static semantics guarantees that the overloaded top-level functions are
less specific than the overloaded functional methods, we do not need to consider top-
level functions here, which makes this second dispatch more efficient. Finally, because
all the functional methods in the visible functional set have self in the same position
in their parameter declarations unless their parameter types are disjoint, and the type
of self is the owner type of each functional method, the dynamic type of the argu-
ment corresponding to self provides all the applicable functional methods to the call

168 J. Kim et al.

including the ones in a supertype of the dynamic type. Given all these conditions, the
dispatch mechanism always selects the unique dynamically most specific function to a
call.

4 Properties and COQ Mechanization

We fully mechanized MFFMM and its type safety proof in COQ. Our mechanization
is based on the metatheory library developed by De Fraine et al. [9]. The COQ

mechanization is very close to MFFMM so that one can easily find the corresponding
declarations and rules between them. The few differences between them are mostly
COQ-specific implementation details, which we omit in this paper.

We proved two traditional theorems for type safety of MFFMM:

Theorem 1 (Progress). Suppose that p is well typed. If an expression e in p has type
(M,C), then e is a value or there exists some e′ such that e evaluates to e′.

Theorem 2 (Preservation). Suppose that p is well typed. If an expression e in p has
type (M,C) and e evaluates to e′, then e′ has type (M ′, C′) where (M ′, C′) is a subtype
of (M,C).

To prove the type safety of MFFMM, we also proved that every functional call in a well-
typed program is uniquely dispatched. Due to space limitations, we refer the interested
readers to our companion report [12].

While Fortress provides separate compilation by components and APIs where inter-
faces between components are described by APIs, we omit APIs for simplicity in this
paper. Note that our formalization captures separate compilation even without APIs
because components must import declarations from other components to make them
visible, and validity judgments are applied only to visible declarations. This is unlike
Java, for example, in which importing only enables the use of unqualified names. Thus,
each component can be checked separately with references only to those declarations
from components that it explicitly imports.

As we discussed in Section 3.1, the key aspects of MFFMM to support components,
which are essential in proving the type safety, are to annotate textually enclosing com-
ponent names to function calls and object constructions and to use actualTyp(M,C)
to denote a type C defined in a component M . Because evaluating an expression in a
component may require evaluation of other expressions in different components, eval-
uation rules may keep track of the component where the current evaluation occurs and
the component that the control goes back to when the current evaluation normally fin-
ishes. Because small-step operational semantics such as our dynamic semantics are
not well suited for keeping track of such surrounding information, we use the anno-
tations of textually enclosing component names to represent such information. Also,
actualTyp(M,C) explicitly denotes the true identities of types that are necessary to
distinguish between types of the same name from different components.

The COQ mechanization of MFFMM is based on our previous work [11] on FFMM,
but we did not reuse much of the FFMM COQ code mainly because the design of
FFMM lacks extensibility. We organized the syntax and semantics of MFFMM in a

Fine-Grained Function Visibility for Multiple Dispatch with Multiple Inheritance 169

modular way so that the new features such as functional methods and components are
represented seamlessly and possible future changes in the calculus can be integrated
smoothly. The COQ mechanization is approximately 9,000 lines and it is available on-
line [10].

5 Related Work

Millstein and Chambers introduce the Dubious language [14], which provides symmet-
ric dynamic multimethod dispatch while allowing a program to be divided into modules
that can be separately type-checked statically. Our work differs from Dubious in these
respects: Dubious is a classless (prototype-oriented) object system, whereas Fortress
traits are classes in this sense; Dubious has only explicitly declared objects, whereas
our work supports dynamically created objects and state; Dubious does not provide
disjoint relations between types and it requires every multimethod to have a principal
type1, thus it cannot support multimethods that take different numbers of arguments
or otherwise do not have a principal type, nor can it allow the position of the owner
to vary, whereas Fortress enlarges a set of valid overloadings thanks to disjoint type
relations; and importing a Dubious module is an all-or-nothing proposition, (though
the cited paper does sketch a possible way to introduce a private keyword to shield
some objects in a module), whereas Fortress import statements allow fine-grained se-
lective import of any parts of a component—in particular, it is possible to import only
selected functional methods of a trait, rather than all methods. Other languages from the
same research group that are similarly closely related to the present work are Cecil [5],
EML [13], MultiJava [7], and Relaxed MultiJava [15]. A block-structured variant of
Cecil, BeCecil [6], supports multimethod declarations in a nested scope, limiting their
visibility to the scope. However, BeCecil does not support a module system, thus it does
not support modular type checking.

Odersky, Wadler and Wehr’s System O [17] supports overloaded declarations with
completely different type signatures, and is modular in the sense that it has the Hind-
ley/Milner type system. The system ensures no ambiguities by putting a simple restric-
tion on type classes, but it requires that overloaded functions should be dispatched on
the first parameter while Fortress allows multiple dispatch.

Scala provides a way to omit some arguments at a method call if they are bound to
implicit parameters [18]. Selecting the most specific implicit parameter that applies in
the method call is similar to overloading resolution in Fortress. While Fortress prohibits
any possibilities of ambiguous calls at functional declaration sites, Scala statically re-
jects ambiguous calls at method use sites.

In Haskell typeclasses [23], overloaded functions must be contained in some type
class, and their signatures must vary in exactly the same structural position. Typeclasses
are ill-suited for functions lacking uniform variance in the domain and range, for exam-
ple. Such behavior is consistent with the static, type-based dispatch of Haskell, but it
would lead to irreconcilable ambiguity in the dynamic, value-based dispatch of Fortress.
While Fortress supports fine-grained imports of overloaded declarations, all instance

1 The parameter and return types of any declaration for a multimethod must be subtypes of their
corresponding types in the principal type.

170 J. Kim et al.

declarations in Haskell are globally visible, and each declaration should check that it
does not overlap with any of the others.

Type safety proofs for several programming languages are mechanized in various
proof assistant tools. Our previous work [11] mechanizes type safety proofs of core
calculi for Fortress in COQ, and the present work is an extension of them especially
with a component system, top-level functions, functional methods, and overloading be-
tween top-level functions and functional methods. Strniša et al. [20] introduce a formal
calculus for Java with a module system, and mechanize its type safety proof using
Isabelle/HOL [16]. The calculus does not provide overloading, and references across
module boundaries use fully qualified names, which amounts to requiring programmers
to use actual types. None of the calculi supports a module system, and the technique
requires a calculus to have placeholders for future extension.

6 Conclusion

Namespace control in object-oriented languages is tricky: On one hand, we want to
inherit method declarations implicitly and be able to override and overload them. On
the other hand, we want to control access to specific methods by controlling where their
names are in scope. Functional methods provide an effective solution: they are inherited
like conventional dotted methods, but their visibility is controlled by components with
selective imports that allow fine-grained namespace control, like top-level functions,
with which they can be overloaded.

Functional methods are an effective approach to solving the operator method prob-
lem. The advantage over dotted methods is that any argument position may serve as
the receiver; the advantage over ordinary functions is that a trait may declare a set
of overloaded operators with disjoint parameter types. Ensuring the existence of the
unique most specific functional declaration for a call in the presence of overloading be-
tween three kinds of functional declarations with symmetric multiple dispatch is tricky.
A component system with selective imports introduces yet another problem that we
should consider the hidden functional methods in traits when we select the most spe-
cific top-level function or functional method for a function call. We have shown how
these features work in a manner that interacts well with namespace control. To guaran-
tee that such features do not cause any undefined or ambiguous calls at run time, we
present a core calculus for Fortress and fully mechanize its type safety proof in COQ.

In the future, we plan to extend this framework to parametrically polymorphic types,
and more type relations such as explicit type exclusion and comprises relations [3].

Acknowledgments. This work is supported in part by Korea Ministry of Education,
Science and Technology(MEST) / National Research Foundation of Korea(NRF)
(Grants NRF-2011-0016139 and NRF-2008-0062609).

References

1. Allen, E., Chase, D., Hallett, J.J., Luchangco, V., Maessen, J.-W., Ryu, S., Steele Jr., G.L.,
Tobin-Hochstadt, S.: The Fortress Language Specification Version 1.0 (March 2008)

Fine-Grained Function Visibility for Multiple Dispatch with Multiple Inheritance 171

2. Allen, E., Hallett, J.J., Luchangco, V., Ryu, S., Steele, G.: Modular multiple dispatch with
multiple inheritance. In: Proc. ACM Symposium on Applied Computing (2007)

3. Allen, E., Hilburn, J., Kilpatrick, S., Luchangco, V., Ryu, S., Chase, D., Steele Jr., G.L.:
Type-checking Modular Multiple Dispatch with Parametric Polymorphism and Multiple In-
heritance. In: OOPSLA (2011)

4. Castagna, G., Ghelli, G., Longo, G.: A calculus for overloaded functions with subtyping. In:
LFP (1992)

5. Chambers, C.: Object-oriented multi-methods in Cecil. In: Madsen, O.L. (ed.) ECOOP 1992.
LNCS, vol. 615, pp. 33–56. Springer, Heidelberg (1992)

6. Chambers, C., Leavens, G.T.: Bececil, a core object-oriented language with block structure
and multimethods: Semantics and typing. In: Proceedings of the 4th International Workshop
on Foundations of Object Oriented Languages (1997)

7. Clifton, C., Millstein, T., Leavens, G.T., Chambers, C.: MultiJava: Design rationale, compiler
implementation, and applications. ACM TOPLAS 28(3), 517–575 (2006)

8. The COQ Development Team. The COQ Proof Assistant, http://coq.inria.fr/
9. De Fraine, B., Ernst, E., Südholt, M.: Cast-Free Featherweight Java (2008),

http://soft.vub.ac.be/˜bdefrain/featherj
10. Kim, J.: MFFMM in COQ (2012), http://plrg.kaist.ac.kr/ media/

research/software/mffmm in coq.tar.gz
11. Kim, J., Ryu, S.: COQ mechanization of Featherweight Fortress with multiple dispatch and

multiple inheritance. In: Proceedings of the First International Conference on Certified Pro-
grams and Proofs (2011)

12. Kim, J., Ryu, S.: MFFMM : Modular Featherweight Fortress with Multiple Dis-
patch and Multiple Inheritance (June 2013), http://plrg.kaist.ac.kr/ media/
research/publications/mffmm calculus.pdf

13. Millstein, T., Bleckner, C., Chambers, C.: Modular typechecking for hierarchically extensible
datatypes and functions. ACM TOPLAS 26(5), 836–889 (2004)

14. Millstein, T., Chambers, C.: Modular statically typed multimethods. Information and Com-
putation 175(1), 76–118 (2002)

15. Millstein, T.D., Reay, M., Chambers, C.: Relaxed MultiJava: balancing extensibility and
modular typechecking. In: OOPSLA (2003)

16. Nipkow, T., Paulson, L.C., Wenzel, M.T.: Isabelle/HOL. LNCS, vol. 2283. Springer,
Heidelberg (2002)

17. Odersky, M., Wadler, P., Wehr, M.: A second look at overloading. In: FPCA, pp. 135–146
(1995)

18. Oliveira, B.C.D.S., Moors, A., Odersky, M.: Type classes as objects and implicits. In:
OOPSLA (2010)

19. Schärli, N., Ducasse, S., Nierstrasz, O., Black, A.P.: Traits: Composable Units of Behaviour.
In: Cardelli, L. (ed.) ECOOP 2003. LNCS, vol. 2743, pp. 248–274. Springer, Heidelberg
(2003)

20. Strniša, R., Sewell, P., Parkinson, M.: The Java module system: Core design and semantic
definition. In: OOPSLA (2007)

21. Stroustrup, B.: The C++ Programming Language. Addison-Wesley, Reading (1986)
22. Szypersky, C., Omohundro, S., Murer, S.: Engineering a programming language: The type

and class system of Sather. In: Gutknecht, J. (ed.) Programming Languages and System Ar-
chitectures. LNCS, vol. 782, pp. 208–227. Springer, Heidelberg (1994)

23. Wadler, P., Blott, S.: How to make ad-hoc polymorphism less ad hoc. In: POPL (1989)

http://coq.inria.fr/
http://soft.vub.ac.be/~bdefrain/featherj
http://plrg.kaist.ac.kr/_media/research/software/mffmm_in_coq.tar.gz
http://plrg.kaist.ac.kr/_media/research/software/mffmm_in_coq.tar.gz
http://plrg.kaist.ac.kr/_media/research/publications/mffmm_calculus.pdf
http://plrg.kaist.ac.kr/_media/research/publications/mffmm_calculus.pdf

	Fine-Grained Function Visibility for Multiple Dispatch with Multiple Inheritance
	1 Introduction
	2 Fortress Language Features
	2.1 Traits and Objects for Multiple Inheritance
	2.2 Three Kinds of Functionals for Multiple Dispatch
	2.3 Components and Selective Imports for Modularity
	2.4 Static Overloading Rules

	3 Calculus:
	3.1 Syntax and Adjustments for Components
	3.2 Static Semantics and Overloading Rules
	3.3 Dynamic Semantics and Functional Dispatch

	4 Properties and COQ Mechanization

	5 Related Work
	6 Conclusion
	References

