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Abstract
Operating system (OS) kernels form the backbone of sys-
tem software. They can have a significant impact on the 
resilience and security of today’s computers. Recent efforts 
have demonstrated the feasibility of formally verifying 
simple general-purpose kernels, but they have ignored the 
important issues of concurrency, which include not just 
user and I/O concurrency on a single core, but also multi-
core parallelism with fine-grained locking. In this work, 
we present CertiKOS, a novel compositional framework 
for building verified concurrent OS kernels. Concurrency 
allows interleaved execution of programs belonging to dif-
ferent abstraction layers and running on different CPUs/
threads. Each such layer can have a different set of observ-
able events. In CertiKOS, these layers and their observable 
events can be formally specified, and each module can then 
be verified at the abstraction level it belongs to. To link all 
the verified pieces together, CertiKOS enforces a so-called 
contextual refinement property for every such piece, which 
states that the implementation will behave like its specifi-
cation under any concurrent context with any valid inter-
leaving. Using CertiKOS, we have successfully developed a 
practical concurrent OS kernel, called mC2, and built the 
formal proofs of its correctness in Coq. The mC2 kernel 
is written in 6500 lines of C and x86 assembly and runs on 
stock x86 multicore machines. To our knowledge, this is the 
first correctness proof of a general-purpose concurrent OS 
kernel with fine-grained locking.

1. INTRODUCTION
Operating system (OS) kernels and hypervisors form the
backbone of safety-critical software systems. Hence, it
is highly desirable to verify the correctness of these pro-
grams formally. Recent efforts5, 6, 10, 13, 17 have shown that it 
is feasible to formally prove the functional correctness of 
simple general-purpose kernels, file systems, and device
drivers. However, none of these systems have addressed
the important issues of concurrency,2 such as not only
user and I/O concurrency on a single CPU but also multi-
core parallelism with fine-grained locking. This severely
limits the applicability of today’s formally verified sys-
tem software.

What makes the verification of concurrent OS kernels 
so challenging? First, concurrent kernels allow interleaved 
execution of kernel/user modules belonging to different 
abstraction layers; they contain many interdependent com-
ponents that are difficult to untangle. Several researchers22, 23  
believe that the combination of fine-grained concurrency 
and the kernels’ functional complexity makes formal 

The original version of this paper is entitled “CertiKOS: An 
Extensible Architecture for Building Certified Concurrent 
OS Kernels” and was published in the Proceedings of 
12th USENIX Symposium on Operating System Design and 
Implementation, 2016, 653–669

verification intractable, and even if it is possible, its cost 
would far exceed that of verifying a sequential kernel.

Second, concurrent kernels need to make all three types 
of concurrency (i.e., user, I/O, and multicore) coherently 
work together. User and I/O concurrency are difficult to rea-
son about because they rely on thread yield/sleep/wakeup 
primitives or interrupts to switch control and support syn-
chronization but still provide the illusion that each user pro-
cess is executed uninterruptedly and sequentially. Multicore 
concurrency with fine-grained locking may utilize sophisti-
cated spinlock implementations such as MCS locks21 that 
are also hard to verify.

Third, concurrent kernels may also require that some 
of their system calls eventually return, but this depends on 
the progress of the concurrent primitives used in the ker-
nels. Formally proving starvation-freedom15 for concurrent 
objects only became possible recently.20 Standard Mesa-
style condition variables (CV)18 do not enforce starvation-
freedom; this can be fixed by storing CVs in a FIFO queue. 
But the solution is not trivial, and even the popular, most 
up-to-date OS textbook,2 has gotten it wrong.

Fourth, given the high cost of building certified c on-
current kernels, it is important that these kernels can be 
quickly adapted to support new hardware platforms and 
applications.3 However, if we are unable to model the 
interference among different components in an extensi-
ble way, even a small change to the kernel could incur a 
huge reverification overhead.

In this paper, we present CertiKOS, a compositional 
framework that tackles all these challenges. We believe that, 
to control the complexity of concurrent kernels and to prove 
a strong support of extensibility, we must first have a compo-
sitional specification that can untangle all the kernel interde-
pendencies and encapsulate interference among different 
kernel objects. Because the very purpose of an OS kernel is to 
build layers of abstraction over bare machines, we insist on 
uncovering and specifying these layers, and then verifying 
each kernel module at the abstraction level it belongs to.

The functional correctness of an OS kernel is often stated 
as a refinement—that is, the behavior of the C/assembly 
implementation of a kernel K is fully captured by its abstract 
functional specification S. Of course, the ultimate goal  
of having a certified kernel is to reason about programs 
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running on top of (or along with) the kernel. It is thus impor-
tant to ensure that given any kernel extension or user pro-
gram P, the combined code K ⊕ P also refines S ⊕ P. If this 
fails to hold, the kernel is functionally incorrect as P can 
observe some behavior of K that does not satisfy S.

In the concurrent setting, such a contextual refinement 
property must hold not only for any context program P but 
also for any environment context ε. When focusing on some 
thread set, each ε defines a specific instance on how other 
threads/CPUs respond to this thread set. With shared-memory 
concurrency, interference between ε and the focused thread 
set is both necessary and common.

In CertiKOS, we introduce certified concurrent abstraction 
layers to state such contextual refinement properties (see 
Figure 1). Each abstraction layer, parameterized over some 
specific ε, is an assembly-level machine extended with a par-
ticular set of abstract objects, that is, abstract states plus 
atomic primitives. These layers enable modular verification 
and can be composed in several manners. Later in Section 
3, we show how the use of ε at each layer allows us to verify 
concurrent programs using standard techniques for verify-
ing sequential programs. Indeed, most of our kernel com-
ponents are written in a variant of C (called ClightX10) and 
verified at the C level. These certified C layers can be com-
piled and linked together into certified assembly layers using 
CompCertX10, 12—a thread-safe version of the CompCert 
compiler.19 Thus, under CertiKOS, an otherwise prohibitive 
verification task can be decomposed into many simple and 
easily automatable ones, and proven global properties can 
be propagated down to the assembly level.

Using CertiKOS, we have successfully developed a fully certi-
fied concurrent OS kernel mC2 in the Coq proof assistant. The 
mC2 kernel consists of 6500 lines of C and x86 assembly, sup-
ports both fine-grained locking and thread yield/sleep/wakeup 
primitives, and can run on stock x86 multicore machines. mC2 
can also double as a hypervisor and boot multiple instances 
of Linux in guest virtual machines (VM) running on different 
CPUs. It guarantees not only functional correctness, that is, the 
mC2 kernel implementation satisfies its system-call specifi-
cation, but also liveness property, that is, all system calls will 
eventually return. The entire proof effort for supporting con-
currency took less than two person-years. To the best of our 
knowledge, mC2 is the first fully verified general-purpose con-
current OS kernel with fine-grained locking.

2. OVERVIEW OF OUR APPROACH
In this section, to illustrate our layered techniques, we will 
walk through a small example (see Figure 1) that uses a lock 
to protect a critical section. In this example, client program P 
has two threads running on two different CPUs; each thread 
makes one call to primitive foo provided by concurrent layer 
interface L2. Interface L2 is implemented by concurrent mod-
ule M2, which in turn is built on top of interface L1. Method 
foo calls two primitives f and g in a critical section protected 
by a lock. The lock is implemented over interface L0 using 
the ticket lock algorithm21 in module M1. The lock maintains 
two integer variables n (the “now serving” ticket number) 
and t (the “next” ticket number). Lock-acquire method acq 
fetches and increments the next ticket number (by FAI_t) 
and spins until the fetched number is served. Lock-release 

Figure 1. The certified (concurrent) abstraction layer, L0R1
 Macq: Lacq, is a predicate plus its mechanized proof object showing that the 

implementation of the ticket lock acquire Macq running on the underlay interface L0 indeed faithfully implements the desirable overlay 
interface Lacq. The implementation Macq is written in C, whereas the interfaces L0 and Lacq are written in Coq. The implementation relation is 
denoted as R1. This layer can be (1) horizontally composed with another layer (e.g., the lock release operation) if they have identical state 
views (i.e., with the same R1) and are based on the same underlay interface L0. The composed layer can also be (2) vertically composed with 
another layer that relies on its overlay interface. Certified C layers can be compiled into certified assembly layers using our (3) CompCertX 
compiler. In the concurrent setting, these layers can also be (4) composed in parallel.
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method rel simply increments the “now serving” ticket num-
ber by inc_n. These primitives are provided by L0 and imple-
mented using x86 atomic instructions. Interface L0 also 
provides primitives f and g that are later passed on to L1, as 
well as ghost primitives pull and push that logically mark the 
acquisition and release of locks. Such ghost primitives only 
help the verification process and are not needed for the pro-
gram to execute.

Here, the concurrent layer interface (e.g., L0) provides a 
set of primitives that can be invoked at this level and uses 
events to capture primitives’ effects that are visible to other 
CPUs/threads. For example, event  represents the 
invocation of FAI_t by CPU 1. In this way, one execution of 
a concurrent program running on a layer machine can be 
specified by a sequence of events, which we call a logical log. 
For example, if two CPUs are executed in the order 1–2–2–1–
1–2–1–2–1–1–1–2–2, running program P (see Figure 1) over 
the layer machine of L0 generates the log:

 (2.1)

Thus, a concurrent module M over L can be specified by 
how M produces events (provided by L). M can then be 
verified by building a certified abstraction layer, : L′, 
stating that the events generated by M over L are fully cap-
tured by the desirable interface L′. Note that the events 
provided by L and L′ might not be exactly the same, and 
the relation between events at different layers is denoted 
as R.

Take the lock-acquire implementation M
acq

 in Figure 1 as 
an example. The goal is to prove that L0 id M

acq
 : L

acq
 holds 

with an identical relation id (between events at two layers), 
where the events generated by L

acq
 (on behalf of thread t) sat-

isfy the pattern:

Events generated by other threads (or CPUs) are omitted here.
To achieve modular verification, we parameterize each 

layer interface L with an active thread set A, and then care-
fully define its set of valid environment contexts, denoted as 
EC(L, A). Each environment context ε captures a specific 
instance—from a particular run—of the list of events that 
other threads or CPUs (not in A) return when responding 
to the events generated by threads in A. We can then define 
a new thread-modular machine ΠL(A)(P, ε) that will operate 
like the usual assembly machine when P switches control to 
threads in A, but will only obtain the list of events from the 
environment context ε when P switches control to threads 
outside A. Here, we use L(A) to denote the layer interface with 
an active thread set A that consists the same set of abstract 
objects with L.

Note that if A is a singleton, for each ε, ΠL(A) behaves like 
a sequential machine: it first queries ε for the events gener-
ated by other threads, and then executes the next instruc-
tion of the active thread. We use  to denote a query to ε. The 
lock-acquire function, on behalf of thread t, can be specified 
in L

acq
({t}) as:

� (2.2)

In this model, other threads’ behaviors and the potential 
interleaving are encapsulated into those queries to ε. We can 
then verify module M

acq
 as it were sequential:

L0 ({t}) id M
acq

 : L
acq

 ({t})

By verifying that the lock-release function M
rel

 also meets its 
specification L

rel
, we can apply the horizontal composition rule to 

obtain the composed layer (where we use L′1 to denote L
acq

 ⊕ L
rel

):

L0 ({t}) id M
acq

 ⊕ M
rel

 : L′1 ({t}) (2.3)

If every valid environment context  guaran-
tees that the loop of get_n in thread t terminates, we can lift  
  to a higher level layer interface L1 ({t}), which speci-
fies the lock-acquire as . We use R1 to denote the rela-
tion between the events of L′1({t}) and L1({t}), for example, 

 is mapped to the event sequence in (2.2). We can prove 
the following certified layer:

 (2.4)

where Ø states that no code is involved at this step. By 
applying the vertical composition rule to (2.3) and (2.4), we 
have that:

L0 ({t}) id°R1
 M

acq
 ⊕ M

rel
 : L1 ({t})

With our new compositional layer semantics, these “per-
thread” certified layers can be soundly composed in parallel 
when their rely conditions (i.e., the constraints to environ-
mental interference) are compatible with each other. For 
example, we can also derive the certified layer for the ticket 
lock on behalf of some thread t′(≠ t). By showing that the 
events generated by t′ belong to EC(L1, {t}) and vice versa, we 
can apply the parallel composition rule to derive:

L0 ({t, t′}) id°R1
 M

acq
 ⊕ M

rel
 : L1 ({t, t′})

Any observable behavior of running P with M
acq

 ⊕ M
rel

 (denoted 
as M1 in Figure 1) over L0({1, 2}) can be captured by running P 
directly on top of L1({1, 2}). For example, the behavior in (2.1) 
can be captured by the following log over L1({1, 2}):

Based on the layer interface L1({t}), we can continue 
verifying that the module M2 satisfies a higher level inter-
face L2({t}), where foo is specified as . The relation 
between these two layer interfaces maps the event  of 
L2({t}) into the event sequence  of L1({t}). 
As the primitive foo is specified by a single event, we call it 
an atomic object. The observable behaviors of running P 
over the layer machine L2({1, 2}) consist of only two logs: 

 
In this way, we can decompose our mC2 kernel K into 

many modules and verify them at the layer interfaces they 
belong to, as if there were only a single active, sequen-
tial thread. These per-thread layers (whose topmost layer 
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interface is LmC2) can be composed into per-CPU layers and 
then further combined into a single multicore machine 
(see Section 3 and Figure 5). We use x86mc to denote this 
assembly-level multicore machine,  to denote the 
whole-machine semantics for x86mc, and  to denote 
the machine semantics equipped with the topmost layer 
interface. The composed certified layers imply the contex-
tual refinement property:

which says that, for any context user program P, the observ-
able behaviors of running P together with K over the multi-
core machine x86mc are fully captured by running P directly 
over LmC2 (see Figure 2). We call LmC2 a deep specification10 of  
K over x86mc, because there is no need to ever look at K 
again; any property about K over x86mc can be proved using 
LmC2 alone.

Overview of the mC2 kernel. Figure 3 shows the system 
architecture of mC2. The mC2 system was initially devel-
oped in the context of a large DARPA-funded research proj-
ect. It is a concurrent OS kernel that can also double as a 
hypervisor. It runs on an unmanned ground vehicle (UGV) 

with a multicore Intel Core i7 machine. On top of mC2, we 
run three Ubuntu Linux systems as guests (one each on the 
first three cores). Each virtual machine runs several robot 
architecture definition language (RADL) nodes that have 
fixed hardware capabilities such as access to GPS, radar, etc. 
The kernel also contains a few simple device drivers (e.g., 
interrupt controllers, serial and keyboard devices). More 
complex devices are either supported at the user level, or 
passed through (via IOMMU) to various guest Linux VMs. By 
running different RADL nodes in different VMs, mC2 pro-
vides strong isolation so that even if attackers take control of 
one VM, they still cannot break into other VMs and compro-
mise the overall mission of the UGV.

What have we proved? Using CertiKOS, we have success-
fully built a fully certified version of the mC2 kernel and 
proved its contextual refinement property with respect to a 
high-level deep specification for mC2. This functional cor-
rectness property implies that all system calls and traps will 
always strictly follow high-level specifications, run safely, 
and eventually terminate; there will be no data race, no code 
injection attacks, no buffer overflows, no null pointer access, 
no integer overflow, etc.

More importantly, because for any program P, we have  
  refines , we can also derive the behavior 
equivalence property for P, that is, whatever behavior a user 
can deduce about P based on the high-level specification for 
the mC2 kernel K, the actual linked system K ⊕ P running on 
the concrete x86mc machine would indeed behave exactly 
as expected. All global properties proven at the system-call 
specification level can be propagated down to the lowest 
assembly machine.

Assumptions and limitations. The mC2 kernel is not 
as comprehensive as real-world kernels such as Linux. For 
example, mC2 currently lacks a certified storage system. The 
main goal of this work is to show that it is feasible to build 
certified concurrent kernels with fine-grained locking. We 

Figure 2. The contextual refinement property that has been proved 
for mC2.
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did not try to incorporate all the latest advances for multicore 
kernels into mC2.

Regarding specification, there are 450 lines of Coq code 
(LOC) to specify the system calls (the topmost layer inter-
face; see Table 1) and 943 LOC to specify the x86 hardware 
machine model (the bottommost layer interface). These are 
in our trusted computing base. We keep them small to limit 
the room for errors and ease the review process.

Our assembly machine assumes strong sequential con-
sistency for all atomic instructions. We believe our proof 
should remain valid for the x86 TSO model because (1) all 
our concurrent layers guarantee that nonatomic memory 
accesses are properly synchronized; and (2) the TSO order 
guarantees that all atomic synchronization operations are 
properly ordered. Nevertheless, more formalization work 
is needed to turn our proofs over sequential-consistent 
machines into those over the TSO machines.23

Also, our machine model only covers a small portion of 
the x86 hardware features and cannot be used to verify some 
kernel components, such as a bootloader, a PreInit module 
(which initializes the CPUs and the devices), an ELF loader, 
and some device drivers (e.g., disk driver). Their verification 
is left for future work.

We also trust the Coq proof checker and the CompCertX 
assembler for converting assembly into machine code.

3. CONCURRENT LAYER MACHINES
In this section, we explain the concurrent layer design prin-
ciples, and show how to introduce per-CPU layer interfaces, 
based on a multicore hardware machine model.
Πx86mc multicore hardware model allows arbitrary inter-

leavings at the level of assembly instructions. At each step, the 
hardware nondeterministically picks one CPU and executes 
the next assembly instruction on that CPU. Each assembly 

instruction is classified as atomic, shared, or private, depend-
ing on the memory it accesses. One interleaving of an exam-
ple program running on two CPUs is:

CPU0

CPU1
switch

atom1 shared1 shared1

private2atom2private1

The memory locations are logically categorized into two 
kinds: the ones private to a single CPU/thread and the ones 
shared by multiple CPUs/threads. Private memory accesses 
do not need to be synchronized, whereas nonatomic shared 
memory accesses need to be protected by some synchroni-
zation mechanisms (e.g., locks), which are normally imple-
mented using atomic instructions (e.g., fetch-and-add). 
With proper protection, each shared memory operation can 
be viewed as if it were atomic.

The atomic object is an abstraction of some segment of 
well-synchronized shared memory, combined with opera-
tions that can be performed over that segment. It consists 
of a set of primitives, an initial state, and a logical log con-
taining the entire history of the operations that were per-
formed on the object during an execution schedule. Each 
primitive invocation records a single corresponding event 
in the log. For example, the above interleaving produces the 
logical log  We require that these events con-
tain enough information so we can derive the current state 
of each atomic object by replaying the entire log over the 
object’s initial state.

As shown in Figure 4, a concurrent layer interface contains 
both private objects (e.g., Oi) and atomic objects (e.g., Oj), 
along with some invariants imposed on them. These objects 
are verified by building certified concurrent layers via for-
ward simulations, which imply strong contextual refinement 
relations:

Definition 1 (Contextual Refinement). We say that 
machine  contextually refines machine  (written as 

 ), if, and only if, for any P that does not get 
stuck on , we also have that (1) P does not get stuck on ;  
and (2) any observable behavior of P on  is also observed  
on .

However, proving such contextual refinements directly on 
a multicore, nondeterministic hardware model is difficult 

Table 1. Verified system calls of the mC2 hypervisor kernel.

kernel_init, get_quota, send, recv, rz_spawn, spawn, sleep, yield, 
wakeup, kill, getc, putc, get_tsc_per_ms, get_curid, vm_exit_info, 
vm_mmap, vm_set_seg, vm_get_reg, vm_set_reg, vm_get_next_eip, 
vm_inject_event, vm_check_int_shadow, vm_run, vm_check_pending_
event, vm_intercept_int_window, vm_get_tsc_offset, vm_set_tsc_offset, 
vm_rdmsr, vm_wrmsr

Figure 4. The overlay interface L2 is a more abstract interface, built on top of the underlay interface L1, and implemented by private module Mi 
and shared module Mj. Private objects in L2 only access the private memory of L1. Atomic objects are implemented by shared modules (e.g., 
Macq in Figure 1) that may access lower-level atomic objects (e.g., FAI_t), private objects, and shared memory. Memory regions of L1 accessed 
by the layer implementation are hidden and replaced by newly introduced objects of L2. The simulation relation R is defined between these 
memory regions and objects, for example, R1 in Section 2. Then, the certified concurrent layer L1R Mi ⊕ Mj : L2 can be built by proving the 
forward simulation: whenever two states s1, s2 are related by R, and running any P over the layer machine based on L2 takes s2 to s2′ in one 
step, then there exists s1′ such that running P ⊕ Mi ⊕ Mj over L1 takes s1 to s1′ in multiple steps, and s1′ and s2′ are also related by R.
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The shared memory updates of the previous example can 
be simulated on Πlcm as follows:

CPU0

local
block 1

shared
block 1

invalid

invalid invalid invalid

invalid

push1shared1shared1pull1atom1

z

zyx

x

pull

operation to local copy

push

Among each shared memory block and all of its local 
copies, only one can be valid at any moment of the machine 
execution. Therefore, for any program P with a potential 
data race, there exists a hardware scheduler such that P gets 
stuck on Πlcm. By showing that a program P is safe (never gets 
stuck) on Πlcm for all possible hardware schedulers, we guar-
antee that P is data-race free.

We have shown (in Coq) that Πlcm is correct with respect to 
the previous machine model Πhs with the EChs:

Lemma 2 (Correctness of Πlcm). 

Πpt: partial machine with environment context. To achieve 
local reasoning, we introduce a partial machine model Πpt that 
can be used to reason about the programs running on a subset of 
CPUs, by parametrizing the model over the behaviors of an envi-
ronment context, that is, the rest of the CPUs.

We call a given local subset of CPUs the active CPU set 
(denoted as A). The partial machine model is configured 
with an active CPU set and it queries the environment con-
text whenever it reaches a switch point that attempts to 
switch to a CPU outside the active set.

The set of environment contexts for A in this machine model is 
denoted as EC(pt, A). Each environment context εpt(A) ∈ EC(pt, A) 
is a response function, which takes the current log and returns a 
list of events from the context programs, that is, those outside of 
A. The response function simulates the observable behavior of 
the context CPUs and imposes some invariants over the con-
text. The hardware scheduler is also a part of the environment 
context. In other words, the events returned by the response 
function also include switch events. The execution of CPU 0 in 
the previous example can be simulated with an εpt({0}) function:

CPU0

({0})

0 0 0 0 0 1, 1 1, 1 1, 1.atom2, 1 0 0 0 0 0
returned
events

atom1 pull1 shared1 shared1 push1

ptE

For example, at the third switch point, εpt({0}) returns the 
event list 

Suppose we have verified that two programs, separately 
running with two disjoint active CPU sets A and B, produce 
event lists satisfying invariants INVA and INVB, respectively. If 
INVA is consistent with the environment-context invariant of 
B, and INVB is consistent with the environment-context invari-
ant of A, then we can compose the two separate programs 
into a single program with active set A ∪ B. This combined 
program is guaranteed to produce event lists satisfying the 
combined invariant INVA ∧ INVB. Using the machine seman-
tics as a set of produced logs, this composition can then be 
defined as a contextual refinement:

because we must consider all possible interleavings. In the 
rest of this section, we show how to gradually refine this 
hardware model into a more abstract one that is suitable for 
reasoning about concurrent code in a CPU-local fashion.
Πhs: machine model with hardware scheduler. By param-

eterized with a hardware scheduler εhs that specifies a partic-
ular interleaving for an execution, the machine model Πhs 
becomes deterministic. To take a program from Πx86mc and 
run it on top of Πhs, we insert a logical switch point, denoted 
as , before each assembly instruction. At each switch point, 
the machine first queries εhs and gets the CPU ID that will exe-
cute next. All the switch decisions made by εhs are stored in the 
logical log state as switch events, for example,  denotes a 
switch event from CPU i to j. The previous example on Πx86mc 
can then be simulated on Πhs by the following εhs:

CPU0 atom1

0
hsE

0 0 1

1 1 1 1

1 0 0 0 0 1

switch
event

private1 atom2

shared1

private2CPU1

shared1

The log recorded by this execution is as follows:

The behavior of running a program P over this machine 
with a particular εhs is the generated log denoted as Πhs(P, εhs). 
We write EChs to represent the set of all possible hardware 
schedulers. Then, the whole-machine semantics can be 
defined as a set of logs:

To ensure the correctness of this machine model, we prove 
that it is contextually refined by the hardware model Πx86mc:

Lemma 1 (Correctness of Πhs). 

Πlcm: machine with local copies of the shared memory. To 
enforce that shared memory accesses are well synchronized, 
we introduce a new machine model (Πlcm) that equips each 
CPU with local copies of shared memory blocks along with 
valid bits. The relation between CPU’s local copies and the 
global shared memory is maintained through two new ghost 
primitives, pull and push.

The pull operation over a particular CompCert-style mem-
ory block19 updates a CPU’s local copy of that block to be 
equal to the one in the shared memory, marking the local 
block as valid and the shared version as invalid. Conversely, 
the push operation updates the shared version to be equal to 
the local block, marking the shared version as valid and the 
local block as invalid.

If a program tries to pull an invalid shared memory block 
or push/access an invalid local block, the program gets stuck. 
We make sure that every shared memory access is always per-
formed on its valid local copy, thus systematically enforcing 
valid accesses to the shared memory. Note that all of these 
constructions are completely logical and do not introduce 
any performance overhead.
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We introduce and verify the mC2 kernel on top of the CPU-
local machine model Πloc. The refinement proof guarantees 
that the proven properties can be propagated down to the 
multicore hardware model Πx86mc.

All our proofs (such as every step in Figure 5) are imple-
mented, composed, and machine-checked in Coq. Each 
refinement step is implemented as a CompCert-style upward-
forward simulation from one layer machine to another. 
Each machine contains the usual (CPU-local) abstract state, 
a logical global log (for shared state), and an environment 
context. The simulation relation is defined over these two 
machine states, and matches the informal intuitions given 
in this and next sections.

4. CERTIFYING THE mC2 KERNEL
Based on the CPU-local layer machine model Πloc, the cer-
tified mC2 kernel can be built by introducing a series of 
logical abstraction layers and decomposing the otherwise 
complex verification tasks into a large number of small trac-
table ones.

In the mC2 kernel, the preinitialization module forms 
the bottom layer machine that connects to Πloc, instantiated 
with a particular active CPU c. The trap handler forms the top 
layer machine that provides system call interface and serves 
as a specification to the whole kernel, instantiated with a 
particular active thread running on that active CPU c. Our 
main theorem states that any global properties proved at the 
topmost layer machine can be propagated down to the low-
est hardware machine. In this section, we explain selected 
components in more detail.

The preinitialization layer machine defines some x86 
hardware behaviors, such as page walking upon memory 
load (when paging is turned on), saving and restoring the 
trap frame in the case of interrupts and exceptions (e.g., page 
fault), and exchanging data between devices and memory. 
The hardware memory management unit (MMU) is modeled 
in a way that mirrors the paging hardware (see Figure 6a). 
When paging is enabled, memory accesses made by both 

Lemma 3 (Composition of partial machines).

After composing the programs on all CPUs, the context 
CPU set becomes empty and the composed invariant holds 
on the whole machine. As there is no context CPU, the envi-
ronment context is reduced to the hardware scheduler, 
which only generates the switch events. In other words, let-
ting C be the entire CPU set, we have that EC(pt, C) = EChs. 
Thus, we can show that this composed machine with the 
entire CPU set C is refined by Πlcm:

Lemma 4 (Correctness of Πpt). 

Πloc: CPU-local machine model. If we focus on a single 
active CPU i, the partial machine model provides a sequen-
tial-like interface configured with an environment context 
representing all other CPUs. However, in this model, there 
is a switch point before each instruction, so program veri-
fication still needs to handle many unnecessary interleav-
ings, for example, those between private operations. Thus, 
we introduce a CPU-local machine model (denoted as Πloc) 
for a CPU i, in which switch points only appear before atomic 
or push/pull operations. The switch points before shared or 
private operations are removed via two steps: shuffling and 
merging.

Every switch point before a shared or private operation 
can be shuffled to the front of the next atomic operation 
by introducing a log cache. For such switch points, query 
results from the environment context are stored in the log 
cache. The cached events are applied to the logical log just 
before the next atomic or push/pull operations. This is sound 
because a shared operation can only be performed when the 
current local copy of shared memory is valid, meaning that 
no other context program can interfere with the operation.

Once the switch points are shuffled properly, we merge all 
the adjacent switch points together. When we merge switch 
points, we also need to merge the switch events generated by 
the environment context. For example, the change of switch 
points for the previous example on CPU-local machine is as 
follows:

CPU0

({0})ptE

CPU0

({0})ptE

CPU0

({0})Eloc

atom1

atom1

atom1

pull1

pull1

pull1

shared1

shared1

shuffle

merge adjacent

shared1

shared1

shared1 shared1 push1

push1

push1

Lemma 5 (Correctness of Πloc).

Finally, we obtain the refinement relation from the multicore 
hardware model to the CPU-local machine model by com-
posing all of the refinement relations together (see Figure 5). 

Figure 5. Contextual refinement between concurrent layer machines.
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release the lock within m steps. By enforcing INV
lock

, we can 
prove that the while-loop in acq (line 15) terminates in n × m 
× #CPU iterations on a CPU-local machine.

After showing the above two properties, we can build a 
certified CPU-local layer, whose overlay interface contains 
an atomic specification (L

acq
) that simply generates an 

event . These per-CPU certified layers can be com-
posed in parallel as long as INV

lock
 holds on each CPU’s local 

execution.
This event-based specification for the spinlock is also 

general enough to capture other implementations such 
as the MCS Lock. In mC2, we have also implemented a ver-
sion of MCS locks.16 The starvation-freedom proof is simi-
lar to that of the ticket lock. The difference is that the MCS 
lock-release operation waits in a loop until the next waiting 
thread (if it exists) has added itself to a linked list, so we 
need similar proofs for both acquisition and release.

Shared memory management provides a protocol to share 
physical pages among different user processes. A physical 
page can be mapped into multiple processes’ page maps. 
For each page, we maintain a logical owner set. For example, a 
user process k1 can share its private physical page i to another 
process k2 and the logical owner set of page i is changed 
from {k1} to {k1, k2}. A shared page can only be freed when 
its owner set is a singleton.

Shared queue library abstracts the queues implemented 
as doubly linked lists into abstract queue states (i.e., Coq 
lists). Local enqueue and dequeue operations are specified 
over the abstract lists. Shared queue operations are protected 
by spinlocks and are specified by queue events  and 

. These events can be replayed (with the function 
Rqueue) to construct the queue state. For example, if the cur-
rent log of the i-th shared queue is [ ], and the event list 
returned by ε is [ ], then the resulting log 
of calling deQ is:

By replaying the log, the queue state is [3;5] and deQ returns 2.
Thread management introduces the thread control block 

and manages the resources of dynamically spawned threads 
(e.g., via quotas) and their metadata (e.g., children, thread 
state). For each thread, one page (4KB) is allocated for its 
kernel stack. We use an external tool4 to show that the stack 
usage of our compiled kernel is less than 4KB, so stack over-
flows cannot occur inside the kernel.

Thread control switches are implemented by the context 
switch function. This assembly function saves the regis-
ter set of the current thread and restores the register set of 
another thread on the same CPU. As the instruction pointer 

the kernel and the user programs are translated using the 
page map pointed to by the register CR3. When page faults 
occur, the fault information is stored in CR2 and the page 
fault handler is triggered.

Spinlock module provides fine-grained lock objects as the 
base of synchronization mechanisms. Figure 1 shows one 
spinlock implementation using the ticket lock algorithm. It 
depends on an atomic ticket object consisting of two fields: 
next ticket number t and now-serving ticket number n. In 
mC2, we introduce an array of ticket objects; each of them 
(identified by a specific lock index i) can be used to protect 
a segment of shared memory. The ticket objects can only be 
manipulated via atomic primitives that generate events. For 
example, fetch-and-increment operation (FAI_t) to the i-th t 
done by CPU c generates an event . Note that FAI_t is 
implemented using instruction xaddl with the lock prefix 
in x86.

The lock implementation generates a list of events; 
for example, when CPU c acquires the lock i, it continu-
ously generates the event  (line 15) until the latest 
n is increased to the ticket value returned by the event 

 (line 14), and then followed by the event  
(line 16):

(my_t, i.n) (9,5) (9,6) (9,8) (9,9) (9,9)

CPUt FAI_t i get_n i get_n i get_n i pull i

loc ({t})E

Verifying the linearizability and starvation-freedom 
of the ticket lock is equivalent to proving that under a fair 
hardware scheduler εhs, the ticket lock implementation is 
a termination-sensitive contextual refinement of its atomic 
specification.20 There are two main proof obligations: (1) the 
lock guarantees mutual exclusion, and (2) the acq operation 
eventually succeeds.

The mutual exclusion property relies on the fact that, at 
any time, only the thread whose ticket t is equal to the current 
serving ticket (i.e., n) can hold the lock, and each thread’s 
ticket t is unique. Here, we must also handle potential inte-
ger overflows for t and n. As long as the total number of CPUs 
(i.e., #CPU) in the machine is less than 232 (determined 
by the uint type), this uniqueness property can be ensured. 
Then, it is safe to pull the shared memory associated with 
the lock i to the local copy at line 16. Before releasing the 
lock, the local copy is pushed back to the shared memory 
at line 19.

The starvation-freedom property relies on the fairness of 
the scheduler, that is, any CPU can be scheduled within n 
steps for some n. We define invariant INV

lock
 over the environ-

ment context to say that environmental lock-holders will 

(a) physical
memory

CR3

… … … …

dir# pt# offset 32-bit virtual address

(b) PMapi

… … … …

… …
virtual

address
space i

physical
memory hidden hidden

Figure 6. (a) Hardware MMU using two-level page map; (b) virtual address space i set up by page map .
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register (EIP) and stack pointer register (ESP) are saved and 
restored in this procedure, this kernel context switch func-
tion does not satisfy the C calling convention and has to be 
verified at the assembly level. Based on this context switch 
function and the shared queue library, we can verify three 
scheduling primitives: yield, sleep, and wakeup (see Figure 7).

Thread-local machine models can be built based on the 
thread management layers. The first step is to extend the 
environment context with a software scheduler (i.e., abstract-
ing the concrete scheduling procedure), resulting in a new 
environment context εss. The scheduling primitives gener-
ate the  and  events. εss responds  
with the next thread ID to execute. The second step is to 
introduce the active thread set to represent the active threads 
on the active CPU, and extend εss with the context threads, 
that is, the rest of the threads running on the active CPU. 
The composition structure is similar to the one of Lemma 3. 
In this way, higher layers can be built upon a thread-local 
machine with a single active thread on the active CPU (see 
Figure 5).

Condition variable (CV) is a synchronization object 
that enables a thread to wait for a change to be made to a 
shared state. Standard Mesa-style CVs18 do not guaran-
tee starvation-freedom: a thread waiting on a CV may not 
be signaled within a bounded number of execution steps. 
We have implemented a starvation-free CV using condi-
tion queues as shown by the popular, most up-to-date OS 
textbook.2 However, we have found a bug in the FIFOBBQ 
implementation as shown in that textbook. Their system 
can get stuck in two cases: (1) when the destroyed CV is kept 
inside the remove queue (rmvQ), which will block the insert 
call to wake up the proper waiter; (2) when multiple CVs are 
woken up within a short period and the lock-holding CV 
thread is not the head of rmvQ, that thread will be removed 
from rmvQ and return to sleep, but will never be woken up 
again. We fixed this issue by postponing the removal of the 
CV thread from rmvQ, until woken thread that is allowed 
to proceed finishes its work; this thread is now responsible 
for removing itself from rmvQ, as well as waking up the next 
thread in rmvQ.

5. EVALUATION
5.1. Proof effort and cost of change
Overall, our certified mC2 kernel consists of 6500 lines of C 
and x86 assembly. The concurrency extensions were com-
pleted in about two person-years. The new concurrency 
framework (to specify, build, and link certified concurrent 
abstraction layers) took about one person-year to develop. 
We extended the certified sequential mCertiKOS kernel5, 8, 10  
(which took another two person-years to develop in total) 
with various features, such as dynamic memory manage-
ment, container support for controlling resource consump-
tion, Intel hardware virtualization support, shared memory 
IPC, two-copy synchronous IPC, ticket and MCS locks, new 
schedulers, condition variables, etc. Some of these features 
were initially added in the sequential setting but later ported 
to the concurrent setting. The verification of these features 
was completed around one person-year. During this develop-
ment process, many of our certified layers underwent many 
modifications and extensions. The CertiKOS framework 
allows such incremental development to take place much 
more smoothly. For example, certified layers in the sequen-
tial kernel can be directly ported to the concurrent setting if 
they only access private state. We have also adapted the work 
by Chen et al.5 on interruptible kernels with device drivers to 
our multicore model.

Regarding the proof effort, there are 5249 lines of addi-
tional specifications for the various kernel functions, and 
about 40K LOC used to define auxiliary definitions, lemmas, 
theorems, and invariants. Additionally, there are 50K lines 
of proof scripts for proving the newly added concurrency 
features.

5.2. Bugs found
Other than the FIFOBBQ bug, we have also found a few other 
bugs during verification. Our initial ticket-lock implementa-
tion contains a particularly subtle bug: the spinning loop body 
(line 15 in Figure 1) was implemented as while(get_n() < my_t). 
This passed all our tests, but during the verification, we found 
that it did not satisfy the atomic specification as the ticket 
field might overflow. For example, if the next ticket number t 
is (232−1), an overflow will occur in acq (line 14 in Figure 1) and 
the returned ticket my_t will equal to 0. In this case, current-
serving number n is not less than my_t and acq gets the lock 
immediately, violating the mutual exclusion property.

5.3. Performance evaluation
Although performance is not the main emphasis of this 
work, we have run a number of micro and macro bench-
marks to measure the speedup and overhead of mC2, and to 
compare mC2 with existing systems such as KVM and seL4. 
All experiments have been performed on a machine with 
one Intel Xeon CPU with four cores running at 2.8 GHz. As 
the power control code has not been verified, we disabled 
the turbo boost and power management features of the 
hardware during experiments.

5.4. Concurrency overhead
The runtime overhead introduced by concurrency in mC2 
mainly comes from the latency of spinlocks.

sleep / yield2

sleep

wakeup by
CPU0

wakeup by
CPU1

SleepQs

PendQ

ReadyQ

Running ThreadCPU0 1

1

1

1

3 yield

yield

2

Figure 7. Each CPU has a private ready queue ReadyQ and a shared 
pending queue PendQ. The environmental CPUs can insert threads 
to the current CPU’s PendQ. The mC2 kernel also provides a set of 
shared sleeping queues SleepQs. The yield primitive moves a thread 
from PendQ to ReadyQ and then switches to the next ready thread. 
The sleep primitive simply adds the running thread to a SleepQ 
and runs the next ready thread. The wakeup primitive contains two 
cases. If the thread to be woken up belongs to the current CPU, it 
will be added to the corresponding ReadyQ. Otherwise, the thread is 
added to PendQ of the CPU it belongs to.
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6. RELATED WORK
Dijkstra9 proposed to “realize” a complex program by 
decomposing it into a hierarchy of linearly ordered abstract 
machines. Based on this idea, Gu et al.10 developed new 
languages and tools for building certified abstraction lay-
ers with deep specifications, and showed how to apply the 
layered methodology to construct certified (sequential) OS 
kernels in Coq. Costanzo et al.8 showed how to prove secu-
rity properties over a deep specification of a certified OS 
kernel, and then propagate these properties from the speci-
fication level to its correct assembly-level implementation. 
Chen et al.5 extended the layer methodology to build certi-
fied kernels and device drivers running on multiple logi-
cal CPUs. They treated the driver stack for each device as if 
it were running on a logical CPU dedicated to that device. 
Logical CPUs do not share any memory, and are all eventu-
ally mapped onto a single physical CPU. None of these sys-
tems, however, can support shared-memory concurrency 
with fine-grained locking.

The seL4 team17 was the first to verify the functional cor-
rectness and security properties of a high-performance 
L4-family microkernel. The seL4 microkernel, however, does 
not support multicore concurrency with fine-grained lock-
ing. Peters et al.22 and von Tessin23 argued that for an seL4-
like microkernel, concurrent data accesses across multiple 
CPUs can be reduced to a minimum, so a single big kernel 
lock (BKL) might be good enough for achieving good perfor-
mance on multicore machines. von Tessin23 further showed 
how to convert the single-core seL4 proofs into proofs for a 
BKL-based clustered multikernel.

The Verisoft team1 applied the VCC framework7 to for-
mally verify Hyper-V, which is a widely deployed multipro-
cessor hypervisor consisting of 100 kLOC of C code and 5 
kLOC of assembly. However, only 20% of the code is veri-
fied7; it is also only verified for function contracts and type 
invariants, rather than the full functional correctness prop-
erty. CIVL14 uses the state-machine approach with support 
for atomic actions and movers to reduce the proof burden 
for concurrent programs. It is implemented as an exten-
sion to Boogie and has been used to verify a concurrent 
garbage collector. However, CIVL can only be used to rea-
son about safety rather than liveness. There is a large body of 
other work6, 13, 24 showing how to build verified OS kernels, 

The mC2 kernel provides two kinds of spinlocks: ticket 
lock and MCS lock. They have the same interface and thus 
are interchangeable. In order to measure their performance, 
we put an empty critical section (payload) under the pro-
tection of a single lock. The latency is measured by taking 
a sample of 10000 consecutive lock acquires and releases 
(transactions) on each round.

Figure 8a shows the results of our latency measurement. 
In the single-core case, ticket locks impose 34 cycles of 
overhead, whereas MCS locks impose 74 cycles as shown 
in the line chart. As the number of cores grows, the latency 
increases rapidly. As the slowdown should be proportional to 
the number of cores, to show the actual efficiency of the lock 
implementations, we normalize the latency against the base-
line (single core) multiplied by the number of cores (n*t1/tn). As 
can be seen from the bar chart, efficiency remains about the 
same for MCS locks, but decreases for ticket locks.

Now that we have compared MCS locks with ticket locks, 
we present the remaining evaluations in this section using 
only the ticket lock implementation of mC2.

5.5. Hypervisor performance
To evaluate mC2 as a hypervisor, we measured the perfor-
mance of some macro benchmarks on Ubuntu 12.04.2 LTS 
running as a guest. We ran the benchmarks on Linux as 
guest in both KVM and mC2, as well as on the bare metal. 
The guest Ubuntu is installed on an internal SSD drive. KVM 
and mC2 are installed on a USB stick. We use the standard 
4KB pages in every setting—huge pages are not used.

Figure 8b contains a compilation of standard macro 
benchmarks: unpacking a Linux 4.0-rc4 kernel archive, 
compiling the Linux 4.0-rc4 kernel source, running Apache 
HTTPerf on loopback, and the DaCaPo Benchmark 9.12. We 
normalize the running times of the benchmarks using the 
bare metal performance as a baseline (100%). The overhead 
of mC2 is moderate and comparable to KVM. In some cases, 
mC2 performs better than KVM; we suspect this is because 
KVM has a Linux host and thus has a larger cache footprint. 
For benchmarks with a large number of file operations, such 
as Uncompress Linux source and Tomcat, mC2 performs 
worse. This is because mC2 exposes the raw disk interface 
to the guest via VirtIO (instead of passing it through), and its 
disk driver does not provide good buffering support.
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hypervisors, file systems, device drivers, and distributed 
systems, but they do not address the issues of shared mem-
ory concurrency.

7. CONCLUSION
We have presented a novel extensible architecture for 
building certified concurrent OS kernels that not only have 
an efficient assembly implementation, but also machine-
checkable contextual correctness proofs. OS kernels devel-
oped using our layered methodology also come with a 
clean, rigorous, and layered specification of all kernel com-
ponents. We show that building certified concurrent ker-
nels is not only feasible but also quite practical. Our layered 
approach to certified concurrent kernels replaces the hard-
ware-enforced “red line” with a large number of abstrac-
tion layers enforced via formal specification and proofs. We 
believe this will open up a whole new dimension of research 
efforts toward building truly reliable, secure, and extensi-
ble system software.
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