
OCTOBER 2019 | VOL. 62 | NO. 10 | COMMUNICATIONS OF THE ACM 89

Building Certified
Concurrent OS Kernels
By Ronghui Gu, Zhong Shao, Hao Chen, Jieung Kim, Jérémie Koenig, Xiongnan (Newman) Wu,
Vilhelm Sjöberg, and David Costanzo

DOI:10.1145/3356903

Abstract
Operating system (OS) kernels form the backbone of sys-
tem software. They can have a significant impact on the
resilience and security of today’s computers. Recent efforts
have demonstrated the feasibility of formally verifying
simple general-purpose kernels, but they have ignored the
important issues of concurrency, which include not just
user and I/O concurrency on a single core, but also multi-
core parallelism with fine-grained locking. In this work,
we present CertiKOS, a novel compositional framework
for building verified concurrent OS kernels. Concurrency
allows interleaved execution of programs belonging to dif-
ferent abstraction layers and running on different CPUs/
threads. Each such layer can have a different set of observ-
able events. In CertiKOS, these layers and their observable
events can be formally specified, and each module can then
be verified at the abstraction level it belongs to. To link all
the verified pieces together, CertiKOS enforces a so-called
contextual refinement property for every such piece, which
states that the implementation will behave like its specifi-
cation under any concurrent context with any valid inter-
leaving. Using CertiKOS, we have successfully developed a
practical concurrent OS kernel, called mC2, and built the
formal proofs of its correctness in Coq. The mC2 kernel
is written in 6500 lines of C and x86 assembly and runs on
stock x86 multicore machines. To our knowledge, this is the
first correctness proof of a general-purpose concurrent OS
kernel with fine-grained locking.

1. INTRODUCTION
Operating system (OS) kernels and hypervisors form the
backbone of safety-critical software systems. Hence, it
is highly desirable to verify the correctness of these pro-
grams formally. Recent efforts5, 6, 10, 13, 17 have shown that it
is feasible to formally prove the functional correctness of
simple general-purpose kernels, file systems, and device
drivers. However, none of these systems have addressed
the important issues of concurrency,2 such as not only
user and I/O concurrency on a single CPU but also multi-
core parallelism with fine-grained locking. This severely
limits the applicability of today’s formally verified sys-
tem software.

What makes the verification of concurrent OS kernels
so challenging? First, concurrent kernels allow interleaved
execution of kernel/user modules belonging to different
abstraction layers; they contain many interdependent com-
ponents that are difficult to untangle. Several researchers22, 23
believe that the combination of fine-grained concurrency
and the kernels’ functional complexity makes formal

The original version of this paper is entitled “CertiKOS: An
Extensible Architecture for Building Certified Concurrent
OS Kernels” and was published in the Proceedings of
12th USENIX Symposium on Operating System Design and
Implementation, 2016, 653–669

verification intractable, and even if it is possible, its cost
would far exceed that of verifying a sequential kernel.

Second, concurrent kernels need to make all three types
of concurrency (i.e., user, I/O, and multicore) coherently
work together. User and I/O concurrency are difficult to rea-
son about because they rely on thread yield/sleep/wakeup
primitives or interrupts to switch control and support syn-
chronization but still provide the illusion that each user pro-
cess is executed uninterruptedly and sequentially. Multicore
concurrency with fine-grained locking may utilize sophisti-
cated spinlock implementations such as MCS locks21 that
are also hard to verify.

Third, concurrent kernels may also require that some
of their system calls eventually return, but this depends on
the progress of the concurrent primitives used in the ker-
nels. Formally proving starvation-freedom15 for concurrent
objects only became possible recently.20 Standard Mesa-
style condition variables (CV)18 do not enforce starvation-
freedom; this can be fixed by storing CVs in a FIFO queue.
But the solution is not trivial, and even the popular, most
up-to-date OS textbook,2 has gotten it wrong.

Fourth, given the high cost of building certified c on-
current kernels, it is important that these kernels can be
quickly adapted to support new hardware platforms and
applications.3 However, if we are unable to model the
interference among different components in an extensi-
ble way, even a small change to the kernel could incur a
huge reverification overhead.

In this paper, we present CertiKOS, a compositional
framework that tackles all these challenges. We believe that,
to control the complexity of concurrent kernels and to prove
a strong support of extensibility, we must first have a compo-
sitional specification that can untangle all the kernel interde-
pendencies and encapsulate interference among different
kernel objects. Because the very purpose of an OS kernel is to
build layers of abstraction over bare machines, we insist on
uncovering and specifying these layers, and then verifying
each kernel module at the abstraction level it belongs to.

The functional correctness of an OS kernel is often stated
as a refinement—that is, the behavior of the C/assembly
implementation of a kernel K is fully captured by its abstract
functional specification S. Of course, the ultimate goal
of having a certified kernel is to reason about programs

http://dx.doi.org/10.1145/3356903
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3356903&domain=pdf&date_stamp=2019-09-24

research highlights

90 COMMUNICATIONS OF THE ACM | OCTOBER 2019 | VOL. 62 | NO. 10

running on top of (or along with) the kernel. It is thus impor-
tant to ensure that given any kernel extension or user pro-
gram P, the combined code K ⊕ P also refines S ⊕ P. If this
fails to hold, the kernel is functionally incorrect as P can
observe some behavior of K that does not satisfy S.

In the concurrent setting, such a contextual refinement
property must hold not only for any context program P but
also for any environment context ε. When focusing on some
thread set, each ε defines a specific instance on how other
threads/CPUs respond to this thread set. With shared-memory
concurrency, interference between ε and the focused thread
set is both necessary and common.

In CertiKOS, we introduce certified concurrent abstraction
layers to state such contextual refinement properties (see
Figure 1). Each abstraction layer, parameterized over some
specific ε, is an assembly-level machine extended with a par-
ticular set of abstract objects, that is, abstract states plus
atomic primitives. These layers enable modular verification
and can be composed in several manners. Later in Section
3, we show how the use of ε at each layer allows us to verify
concurrent programs using standard techniques for verify-
ing sequential programs. Indeed, most of our kernel com-
ponents are written in a variant of C (called ClightX10) and
verified at the C level. These certified C layers can be com-
piled and linked together into certified assembly layers using
CompCertX10, 12—a thread-safe version of the CompCert
compiler.19 Thus, under CertiKOS, an otherwise prohibitive
verification task can be decomposed into many simple and
easily automatable ones, and proven global properties can
be propagated down to the assembly level.

Using CertiKOS, we have successfully developed a fully certi-
fied concurrent OS kernel mC2 in the Coq proof assistant. The
mC2 kernel consists of 6500 lines of C and x86 assembly, sup-
ports both fine-grained locking and thread yield/sleep/wakeup
primitives, and can run on stock x86 multicore machines. mC2
can also double as a hypervisor and boot multiple instances
of Linux in guest virtual machines (VM) running on different
CPUs. It guarantees not only functional correctness, that is, the
mC2 kernel implementation satisfies its system-call specifi-
cation, but also liveness property, that is, all system calls will
eventually return. The entire proof effort for supporting con-
currency took less than two person-years. To the best of our
knowledge, mC2 is the first fully verified general-purpose con-
current OS kernel with fine-grained locking.

2. OVERVIEW OF OUR APPROACH
In this section, to illustrate our layered techniques, we will
walk through a small example (see Figure 1) that uses a lock
to protect a critical section. In this example, client program P
has two threads running on two different CPUs; each thread
makes one call to primitive foo provided by concurrent layer
interface L2. Interface L2 is implemented by concurrent mod-
ule M2, which in turn is built on top of interface L1. Method
foo calls two primitives f and g in a critical section protected
by a lock. The lock is implemented over interface L0 using
the ticket lock algorithm21 in module M1. The lock maintains
two integer variables n (the “now serving” ticket number)
and t (the “next” ticket number). Lock-acquire method acq
fetches and increments the next ticket number (by FAI_t)
and spins until the fetched number is served. Lock-release

Figure 1. The certified (concurrent) abstraction layer, L0R1
 Macq: Lacq, is a predicate plus its mechanized proof object showing that the

implementation of the ticket lock acquire Macq running on the underlay interface L0 indeed faithfully implements the desirable overlay
interface Lacq. The implementation Macq is written in C, whereas the interfaces L0 and Lacq are written in Coq. The implementation relation is
denoted as R1. This layer can be (1) horizontally composed with another layer (e.g., the lock release operation) if they have identical state
views (i.e., with the same R1) and are based on the same underlay interface L0. The composed layer can also be (2) vertically composed with
another layer that relies on its overlay interface. Certified C layers can be compiled into certified assembly layers using our (3) CompCertX
compiler. In the concurrent setting, these layers can also be (4) composed in parallel.

OCTOBER 2019 | VOL. 62 | NO. 10 | COMMUNICATIONS OF THE ACM 91

method rel simply increments the “now serving” ticket num-
ber by inc_n. These primitives are provided by L0 and imple-
mented using x86 atomic instructions. Interface L0 also
provides primitives f and g that are later passed on to L1, as
well as ghost primitives pull and push that logically mark the
acquisition and release of locks. Such ghost primitives only
help the verification process and are not needed for the pro-
gram to execute.

Here, the concurrent layer interface (e.g., L0) provides a
set of primitives that can be invoked at this level and uses
events to capture primitives’ effects that are visible to other
CPUs/threads. For example, event represents the
invocation of FAI_t by CPU 1. In this way, one execution of
a concurrent program running on a layer machine can be
specified by a sequence of events, which we call a logical log.
For example, if two CPUs are executed in the order 1–2–2–1–
1–2–1–2–1–1–1–2–2, running program P (see Figure 1) over
the layer machine of L0 generates the log:

 (2.1)

Thus, a concurrent module M over L can be specified by
how M produces events (provided by L). M can then be
verified by building a certified abstraction layer, : L′,
stating that the events generated by M over L are fully cap-
tured by the desirable interface L′. Note that the events
provided by L and L′ might not be exactly the same, and
the relation between events at different layers is denoted
as R.

Take the lock-acquire implementation M
acq

 in Figure 1 as
an example. The goal is to prove that L0 id M

acq
 : L

acq
 holds

with an identical relation id (between events at two layers),
where the events generated by L

acq
 (on behalf of thread t) sat-

isfy the pattern:

Events generated by other threads (or CPUs) are omitted here.
To achieve modular verification, we parameterize each

layer interface L with an active thread set A, and then care-
fully define its set of valid environment contexts, denoted as
EC(L, A). Each environment context ε captures a specific
instance—from a particular run—of the list of events that
other threads or CPUs (not in A) return when responding
to the events generated by threads in A. We can then define
a new thread-modular machine ΠL(A)(P, ε) that will operate
like the usual assembly machine when P switches control to
threads in A, but will only obtain the list of events from the
environment context ε when P switches control to threads
outside A. Here, we use L(A) to denote the layer interface with
an active thread set A that consists the same set of abstract
objects with L.

Note that if A is a singleton, for each ε, ΠL(A) behaves like
a sequential machine: it first queries ε for the events gener-
ated by other threads, and then executes the next instruc-
tion of the active thread. We use to denote a query to ε. The
lock-acquire function, on behalf of thread t, can be specified
in L

acq
({t}) as:

� (2.2)

In this model, other threads’ behaviors and the potential
interleaving are encapsulated into those queries to ε. We can
then verify module M

acq
 as it were sequential:

L0 ({t}) id M
acq

 : L
acq

 ({t})

By verifying that the lock-release function M
rel

 also meets its
specification L

rel
, we can apply the horizontal composition rule to

obtain the composed layer (where we use L′1 to denote L
acq

 ⊕ L
rel

):

L0 ({t}) id M
acq

 ⊕ M
rel

 : L′1 ({t}) (2.3)

If every valid environment context guaran-
tees that the loop of get_n in thread t terminates, we can lift
 to a higher level layer interface L1 ({t}), which speci-
fies the lock-acquire as . We use R1 to denote the rela-
tion between the events of L′1({t}) and L1({t}), for example,

 is mapped to the event sequence in (2.2). We can prove
the following certified layer:

 (2.4)

where Ø states that no code is involved at this step. By
applying the vertical composition rule to (2.3) and (2.4), we
have that:

L0 ({t}) id°R1
 M

acq
 ⊕ M

rel
 : L1 ({t})

With our new compositional layer semantics, these “per-
thread” certified layers can be soundly composed in parallel
when their rely conditions (i.e., the constraints to environ-
mental interference) are compatible with each other. For
example, we can also derive the certified layer for the ticket
lock on behalf of some thread t′(≠ t). By showing that the
events generated by t′ belong to EC(L1, {t}) and vice versa, we
can apply the parallel composition rule to derive:

L0 ({t, t′}) id°R1
 M

acq
 ⊕ M

rel
 : L1 ({t, t′})

Any observable behavior of running P with M
acq

 ⊕ M
rel

 (denoted
as M1 in Figure 1) over L0({1, 2}) can be captured by running P
directly on top of L1({1, 2}). For example, the behavior in (2.1)
can be captured by the following log over L1({1, 2}):

Based on the layer interface L1({t}), we can continue
verifying that the module M2 satisfies a higher level inter-
face L2({t}), where foo is specified as . The relation
between these two layer interfaces maps the event of
L2({t}) into the event sequence of L1({t}).
As the primitive foo is specified by a single event, we call it
an atomic object. The observable behaviors of running P
over the layer machine L2({1, 2}) consist of only two logs:

In this way, we can decompose our mC2 kernel K into

many modules and verify them at the layer interfaces they
belong to, as if there were only a single active, sequen-
tial thread. These per-thread layers (whose topmost layer

research highlights

92 COMMUNICATIONS OF THE ACM | OCTOBER 2019 | VOL. 62 | NO. 10

interface is LmC2) can be composed into per-CPU layers and
then further combined into a single multicore machine
(see Section 3 and Figure 5). We use x86mc to denote this
assembly-level multicore machine, to denote the
whole-machine semantics for x86mc, and to denote
the machine semantics equipped with the topmost layer
interface. The composed certified layers imply the contex-
tual refinement property:

which says that, for any context user program P, the observ-
able behaviors of running P together with K over the multi-
core machine x86mc are fully captured by running P directly
over LmC2 (see Figure 2). We call LmC2 a deep specification10 of
K over x86mc, because there is no need to ever look at K
again; any property about K over x86mc can be proved using
LmC2 alone.

Overview of the mC2 kernel. Figure 3 shows the system
architecture of mC2. The mC2 system was initially devel-
oped in the context of a large DARPA-funded research proj-
ect. It is a concurrent OS kernel that can also double as a
hypervisor. It runs on an unmanned ground vehicle (UGV)

with a multicore Intel Core i7 machine. On top of mC2, we
run three Ubuntu Linux systems as guests (one each on the
first three cores). Each virtual machine runs several robot
architecture definition language (RADL) nodes that have
fixed hardware capabilities such as access to GPS, radar, etc.
The kernel also contains a few simple device drivers (e.g.,
interrupt controllers, serial and keyboard devices). More
complex devices are either supported at the user level, or
passed through (via IOMMU) to various guest Linux VMs. By
running different RADL nodes in different VMs, mC2 pro-
vides strong isolation so that even if attackers take control of
one VM, they still cannot break into other VMs and compro-
mise the overall mission of the UGV.

What have we proved? Using CertiKOS, we have success-
fully built a fully certified version of the mC2 kernel and
proved its contextual refinement property with respect to a
high-level deep specification for mC2. This functional cor-
rectness property implies that all system calls and traps will
always strictly follow high-level specifications, run safely,
and eventually terminate; there will be no data race, no code
injection attacks, no buffer overflows, no null pointer access,
no integer overflow, etc.

More importantly, because for any program P, we have
 refines , we can also derive the behavior
equivalence property for P, that is, whatever behavior a user
can deduce about P based on the high-level specification for
the mC2 kernel K, the actual linked system K ⊕ P running on
the concrete x86mc machine would indeed behave exactly
as expected. All global properties proven at the system-call
specification level can be propagated down to the lowest
assembly machine.

Assumptions and limitations. The mC2 kernel is not
as comprehensive as real-world kernels such as Linux. For
example, mC2 currently lacks a certified storage system. The
main goal of this work is to show that it is feasible to build
certified concurrent kernels with fine-grained locking. We

Figure 2. The contextual refinement property that has been proved
for mC2.

regs

regs
mC2

Kernel
Code K

priv & shared mem

P

P

priv & shared mem

mC2

x86mc

top

bottom

Asm Instructions

Asm Instructions

contextual refinement

System Calls

abstract state

atom obj

Figure 3. The mC2 hypervisor kernel contains various shared objects such as spinlock modules (Ticket, MCS), sleep queues (SleepQ, for
implementing queuing locks and condition variables), pending queues (PendQ, for waking up a thread on another CPU), container-based
physical and virtual memory management modules (Container, PMM, VMM), a Lib Mem module (for implementing shared-memory IPC),
synchronization modules (FIFOBBQ, CV), and an IPC module. Within each core (the purple box), we have the per-CPU scheduler, the kernel-
thread management module, the process management module, and the virtualization module (VM Monitor). Each kernel thread has its own
thread-control block (TCB), context, and stack.

IPC

Lib Mem

Page Map

ELF Ldr

VMM

PendQ

Memory

Container Console Buffer

SleepQ
PMM

Alloc Tbl

APIC

Console

Kbd

VideoIO
A

P
IC

Serial

Legend

Hardware

Core 8

LAPIC 8

Core 1

LAPIC 1 ...

Core 0

LAPIC 0 B
IO

S

D
M

A

Data

Driver

Kern. Module

drive

Use

CV

Process

Thread

Cur TID

RdyQ

PCPU

FIFOBBQ

Sy
nc

.
&

M
ut

ua
l

E
xc

lu
.

VM Monitor

Timer

TSC

Hz

P
er

 T
hr

ea
d

LAPIC

C
P

U

TCB

k_stack

k_context

Per Core

VGA
(Video)

IO
A

P
IC

S
er

ia
l

K
ey

bo
ar

d

Scheduler

M

Heap

TicketS
pi

n
Lo

ck
s

MCS

Trap & Syscall

OCTOBER 2019 | VOL. 62 | NO. 10 | COMMUNICATIONS OF THE ACM 93

did not try to incorporate all the latest advances for multicore
kernels into mC2.

Regarding specification, there are 450 lines of Coq code
(LOC) to specify the system calls (the topmost layer inter-
face; see Table 1) and 943 LOC to specify the x86 hardware
machine model (the bottommost layer interface). These are
in our trusted computing base. We keep them small to limit
the room for errors and ease the review process.

Our assembly machine assumes strong sequential con-
sistency for all atomic instructions. We believe our proof
should remain valid for the x86 TSO model because (1) all
our concurrent layers guarantee that nonatomic memory
accesses are properly synchronized; and (2) the TSO order
guarantees that all atomic synchronization operations are
properly ordered. Nevertheless, more formalization work
is needed to turn our proofs over sequential-consistent
machines into those over the TSO machines.23

Also, our machine model only covers a small portion of
the x86 hardware features and cannot be used to verify some
kernel components, such as a bootloader, a PreInit module
(which initializes the CPUs and the devices), an ELF loader,
and some device drivers (e.g., disk driver). Their verification
is left for future work.

We also trust the Coq proof checker and the CompCertX
assembler for converting assembly into machine code.

3. CONCURRENT LAYER MACHINES
In this section, we explain the concurrent layer design prin-
ciples, and show how to introduce per-CPU layer interfaces,
based on a multicore hardware machine model.
Πx86mc multicore hardware model allows arbitrary inter-

leavings at the level of assembly instructions. At each step, the
hardware nondeterministically picks one CPU and executes
the next assembly instruction on that CPU. Each assembly

instruction is classified as atomic, shared, or private, depend-
ing on the memory it accesses. One interleaving of an exam-
ple program running on two CPUs is:

CPU0

CPU1
switch

atom1 shared1 shared1

private2atom2private1

The memory locations are logically categorized into two
kinds: the ones private to a single CPU/thread and the ones
shared by multiple CPUs/threads. Private memory accesses
do not need to be synchronized, whereas nonatomic shared
memory accesses need to be protected by some synchroni-
zation mechanisms (e.g., locks), which are normally imple-
mented using atomic instructions (e.g., fetch-and-add).
With proper protection, each shared memory operation can
be viewed as if it were atomic.

The atomic object is an abstraction of some segment of
well-synchronized shared memory, combined with opera-
tions that can be performed over that segment. It consists
of a set of primitives, an initial state, and a logical log con-
taining the entire history of the operations that were per-
formed on the object during an execution schedule. Each
primitive invocation records a single corresponding event
in the log. For example, the above interleaving produces the
logical log We require that these events con-
tain enough information so we can derive the current state
of each atomic object by replaying the entire log over the
object’s initial state.

As shown in Figure 4, a concurrent layer interface contains
both private objects (e.g., Oi) and atomic objects (e.g., Oj),
along with some invariants imposed on them. These objects
are verified by building certified concurrent layers via for-
ward simulations, which imply strong contextual refinement
relations:

Definition 1 (Contextual Refinement). We say that
machine contextually refines machine (written as

), if, and only if, for any P that does not get
stuck on , we also have that (1) P does not get stuck on ;
and (2) any observable behavior of P on is also observed
on .

However, proving such contextual refinements directly on
a multicore, nondeterministic hardware model is difficult

Table 1. Verified system calls of the mC2 hypervisor kernel.

kernel_init, get_quota, send, recv, rz_spawn, spawn, sleep, yield,
wakeup, kill, getc, putc, get_tsc_per_ms, get_curid, vm_exit_info,
vm_mmap, vm_set_seg, vm_get_reg, vm_set_reg, vm_get_next_eip,
vm_inject_event, vm_check_int_shadow, vm_run, vm_check_pending_
event, vm_intercept_int_window, vm_get_tsc_offset, vm_set_tsc_offset,
vm_rdmsr, vm_wrmsr

Figure 4. The overlay interface L2 is a more abstract interface, built on top of the underlay interface L1, and implemented by private module Mi
and shared module Mj. Private objects in L2 only access the private memory of L1. Atomic objects are implemented by shared modules (e.g.,
Macq in Figure 1) that may access lower-level atomic objects (e.g., FAI_t), private objects, and shared memory. Memory regions of L1 accessed
by the layer implementation are hidden and replaced by newly introduced objects of L2. The simulation relation R is defined between these
memory regions and objects, for example, R1 in Section 2. Then, the certified concurrent layer L1R Mi ⊕ Mj : L2 can be built by proving the
forward simulation: whenever two states s1, s2 are related by R, and running any P over the layer machine based on L2 takes s2 to s2′ in one
step, then there exists s1′ such that running P ⊕ Mi ⊕ Mj over L1 takes s1 to s1′ in multiple steps, and s1′ and s2′ are also related by R.

Private Mem

Private Mem Private Obj Shared Mem

Shared MemPrivate Obj

Private
Module Mi

Shared
Module Mj

Atom Obj S
2

S
1

S'
1

S'
2

Atom Obj

A

P

Oi

Overlay L2

forward simulation

Underlay L1

R R R R

P

P Mi Mj

L2

L1

Oj

research highlights

94 COMMUNICATIONS OF THE ACM | OCTOBER 2019 | VOL. 62 | NO. 10

The shared memory updates of the previous example can
be simulated on Πlcm as follows:

CPU0

local
block 1

shared
block 1

invalid

invalid invalid invalid

invalid

push1shared1shared1pull1atom1

z

zyx

x

pull

operation to local copy

push

Among each shared memory block and all of its local
copies, only one can be valid at any moment of the machine
execution. Therefore, for any program P with a potential
data race, there exists a hardware scheduler such that P gets
stuck on Πlcm. By showing that a program P is safe (never gets
stuck) on Πlcm for all possible hardware schedulers, we guar-
antee that P is data-race free.

We have shown (in Coq) that Πlcm is correct with respect to
the previous machine model Πhs with the EChs:

Lemma 2 (Correctness of Πlcm).

Πpt: partial machine with environment context. To achieve
local reasoning, we introduce a partial machine model Πpt that
can be used to reason about the programs running on a subset of
CPUs, by parametrizing the model over the behaviors of an envi-
ronment context, that is, the rest of the CPUs.

We call a given local subset of CPUs the active CPU set
(denoted as A). The partial machine model is configured
with an active CPU set and it queries the environment con-
text whenever it reaches a switch point that attempts to
switch to a CPU outside the active set.

The set of environment contexts for A in this machine model is
denoted as EC(pt, A). Each environment context εpt(A) ∈ EC(pt, A)
is a response function, which takes the current log and returns a
list of events from the context programs, that is, those outside of
A. The response function simulates the observable behavior of
the context CPUs and imposes some invariants over the con-
text. The hardware scheduler is also a part of the environment
context. In other words, the events returned by the response
function also include switch events. The execution of CPU 0 in
the previous example can be simulated with an εpt({0}) function:

CPU0

({0})

0 0 0 0 0 1, 1 1, 1 1, 1.atom2, 1 0 0 0 0 0
returned
events

atom1 pull1 shared1 shared1 push1

ptE

For example, at the third switch point, εpt({0}) returns the
event list

Suppose we have verified that two programs, separately
running with two disjoint active CPU sets A and B, produce
event lists satisfying invariants INVA and INVB, respectively. If
INVA is consistent with the environment-context invariant of
B, and INVB is consistent with the environment-context invari-
ant of A, then we can compose the two separate programs
into a single program with active set A ∪ B. This combined
program is guaranteed to produce event lists satisfying the
combined invariant INVA ∧ INVB. Using the machine seman-
tics as a set of produced logs, this composition can then be
defined as a contextual refinement:

because we must consider all possible interleavings. In the
rest of this section, we show how to gradually refine this
hardware model into a more abstract one that is suitable for
reasoning about concurrent code in a CPU-local fashion.
Πhs: machine model with hardware scheduler. By param-

eterized with a hardware scheduler εhs that specifies a partic-
ular interleaving for an execution, the machine model Πhs
becomes deterministic. To take a program from Πx86mc and
run it on top of Πhs, we insert a logical switch point, denoted
as , before each assembly instruction. At each switch point,
the machine first queries εhs and gets the CPU ID that will exe-
cute next. All the switch decisions made by εhs are stored in the
logical log state as switch events, for example, denotes a
switch event from CPU i to j. The previous example on Πx86mc
can then be simulated on Πhs by the following εhs:

CPU0 atom1

0
hsE

0 0 1

1 1 1 1

1 0 0 0 0 1

switch
event

private1 atom2

shared1

private2CPU1

shared1

The log recorded by this execution is as follows:

The behavior of running a program P over this machine
with a particular εhs is the generated log denoted as Πhs(P, εhs).
We write EChs to represent the set of all possible hardware
schedulers. Then, the whole-machine semantics can be
defined as a set of logs:

To ensure the correctness of this machine model, we prove
that it is contextually refined by the hardware model Πx86mc:

Lemma 1 (Correctness of Πhs).

Πlcm: machine with local copies of the shared memory. To
enforce that shared memory accesses are well synchronized,
we introduce a new machine model (Πlcm) that equips each
CPU with local copies of shared memory blocks along with
valid bits. The relation between CPU’s local copies and the
global shared memory is maintained through two new ghost
primitives, pull and push.

The pull operation over a particular CompCert-style mem-
ory block19 updates a CPU’s local copy of that block to be
equal to the one in the shared memory, marking the local
block as valid and the shared version as invalid. Conversely,
the push operation updates the shared version to be equal to
the local block, marking the shared version as valid and the
local block as invalid.

If a program tries to pull an invalid shared memory block
or push/access an invalid local block, the program gets stuck.
We make sure that every shared memory access is always per-
formed on its valid local copy, thus systematically enforcing
valid accesses to the shared memory. Note that all of these
constructions are completely logical and do not introduce
any performance overhead.

OCTOBER 2019 | VOL. 62 | NO. 10 | COMMUNICATIONS OF THE ACM 95

We introduce and verify the mC2 kernel on top of the CPU-
local machine model Πloc. The refinement proof guarantees
that the proven properties can be propagated down to the
multicore hardware model Πx86mc.

All our proofs (such as every step in Figure 5) are imple-
mented, composed, and machine-checked in Coq. Each
refinement step is implemented as a CompCert-style upward-
forward simulation from one layer machine to another.
Each machine contains the usual (CPU-local) abstract state,
a logical global log (for shared state), and an environment
context. The simulation relation is defined over these two
machine states, and matches the informal intuitions given
in this and next sections.

4. CERTIFYING THE mC2 KERNEL
Based on the CPU-local layer machine model Πloc, the cer-
tified mC2 kernel can be built by introducing a series of
logical abstraction layers and decomposing the otherwise
complex verification tasks into a large number of small trac-
table ones.

In the mC2 kernel, the preinitialization module forms
the bottom layer machine that connects to Πloc, instantiated
with a particular active CPU c. The trap handler forms the top
layer machine that provides system call interface and serves
as a specification to the whole kernel, instantiated with a
particular active thread running on that active CPU c. Our
main theorem states that any global properties proved at the
topmost layer machine can be propagated down to the low-
est hardware machine. In this section, we explain selected
components in more detail.

The preinitialization layer machine defines some x86
hardware behaviors, such as page walking upon memory
load (when paging is turned on), saving and restoring the
trap frame in the case of interrupts and exceptions (e.g., page
fault), and exchanging data between devices and memory.
The hardware memory management unit (MMU) is modeled
in a way that mirrors the paging hardware (see Figure 6a).
When paging is enabled, memory accesses made by both

Lemma 3 (Composition of partial machines).

After composing the programs on all CPUs, the context
CPU set becomes empty and the composed invariant holds
on the whole machine. As there is no context CPU, the envi-
ronment context is reduced to the hardware scheduler,
which only generates the switch events. In other words, let-
ting C be the entire CPU set, we have that EC(pt, C) = EChs.
Thus, we can show that this composed machine with the
entire CPU set C is refined by Πlcm:

Lemma 4 (Correctness of Πpt).

Πloc: CPU-local machine model. If we focus on a single
active CPU i, the partial machine model provides a sequen-
tial-like interface configured with an environment context
representing all other CPUs. However, in this model, there
is a switch point before each instruction, so program veri-
fication still needs to handle many unnecessary interleav-
ings, for example, those between private operations. Thus,
we introduce a CPU-local machine model (denoted as Πloc)
for a CPU i, in which switch points only appear before atomic
or push/pull operations. The switch points before shared or
private operations are removed via two steps: shuffling and
merging.

Every switch point before a shared or private operation
can be shuffled to the front of the next atomic operation
by introducing a log cache. For such switch points, query
results from the environment context are stored in the log
cache. The cached events are applied to the logical log just
before the next atomic or push/pull operations. This is sound
because a shared operation can only be performed when the
current local copy of shared memory is valid, meaning that
no other context program can interfere with the operation.

Once the switch points are shuffled properly, we merge all
the adjacent switch points together. When we merge switch
points, we also need to merge the switch events generated by
the environment context. For example, the change of switch
points for the previous example on CPU-local machine is as
follows:

CPU0

({0})ptE

CPU0

({0})ptE

CPU0

({0})Eloc

atom1

atom1

atom1

pull1

pull1

pull1

shared1

shared1

shuffle

merge adjacent

shared1

shared1

shared1 shared1 push1

push1

push1

Lemma 5 (Correctness of Πloc).

Finally, we obtain the refinement relation from the multicore
hardware model to the CPU-local machine model by com-
posing all of the refinement relations together (see Figure 5).

Figure 5. Contextual refinement between concurrent layer machines.

user
programs

threadi0
threadj0 threadj1

EC(loc, {i})

EC(pt, {i}) EC(pt, { j})

EC(loc, {i})

pt,({ j})

loc({ j})

CPUi CPUj

Πloc

EChsΠpt

EChs

EChs

Πhs

Πhs

Πx86mc

Πpt

Πloc

Πpt

threadi1

LmC2

Lk+1

Lk

loc({i})

pt({i})

Lemma3

Lemma4

Lemma2

Lemma1

pt

lcm

hs

x86mc

research highlights

96 COMMUNICATIONS OF THE ACM | OCTOBER 2019 | VOL. 62 | NO. 10

release the lock within m steps. By enforcing INV
lock

, we can
prove that the while-loop in acq (line 15) terminates in n × m
× #CPU iterations on a CPU-local machine.

After showing the above two properties, we can build a
certified CPU-local layer, whose overlay interface contains
an atomic specification (L

acq
) that simply generates an

event . These per-CPU certified layers can be com-
posed in parallel as long as INV

lock
 holds on each CPU’s local

execution.
This event-based specification for the spinlock is also

general enough to capture other implementations such
as the MCS Lock. In mC2, we have also implemented a ver-
sion of MCS locks.16 The starvation-freedom proof is simi-
lar to that of the ticket lock. The difference is that the MCS
lock-release operation waits in a loop until the next waiting
thread (if it exists) has added itself to a linked list, so we
need similar proofs for both acquisition and release.

Shared memory management provides a protocol to share
physical pages among different user processes. A physical
page can be mapped into multiple processes’ page maps.
For each page, we maintain a logical owner set. For example, a
user process k1 can share its private physical page i to another
process k2 and the logical owner set of page i is changed
from {k1} to {k1, k2}. A shared page can only be freed when
its owner set is a singleton.

Shared queue library abstracts the queues implemented
as doubly linked lists into abstract queue states (i.e., Coq
lists). Local enqueue and dequeue operations are specified
over the abstract lists. Shared queue operations are protected
by spinlocks and are specified by queue events and

. These events can be replayed (with the function
Rqueue) to construct the queue state. For example, if the cur-
rent log of the i-th shared queue is [], and the event list
returned by ε is [], then the resulting log
of calling deQ is:

By replaying the log, the queue state is [3;5] and deQ returns 2.
Thread management introduces the thread control block

and manages the resources of dynamically spawned threads
(e.g., via quotas) and their metadata (e.g., children, thread
state). For each thread, one page (4KB) is allocated for its
kernel stack. We use an external tool4 to show that the stack
usage of our compiled kernel is less than 4KB, so stack over-
flows cannot occur inside the kernel.

Thread control switches are implemented by the context
switch function. This assembly function saves the regis-
ter set of the current thread and restores the register set of
another thread on the same CPU. As the instruction pointer

the kernel and the user programs are translated using the
page map pointed to by the register CR3. When page faults
occur, the fault information is stored in CR2 and the page
fault handler is triggered.

Spinlock module provides fine-grained lock objects as the
base of synchronization mechanisms. Figure 1 shows one
spinlock implementation using the ticket lock algorithm. It
depends on an atomic ticket object consisting of two fields:
next ticket number t and now-serving ticket number n. In
mC2, we introduce an array of ticket objects; each of them
(identified by a specific lock index i) can be used to protect
a segment of shared memory. The ticket objects can only be
manipulated via atomic primitives that generate events. For
example, fetch-and-increment operation (FAI_t) to the i-th t
done by CPU c generates an event . Note that FAI_t is
implemented using instruction xaddl with the lock prefix
in x86.

The lock implementation generates a list of events;
for example, when CPU c acquires the lock i, it continu-
ously generates the event (line 15) until the latest
n is increased to the ticket value returned by the event

 (line 14), and then followed by the event
(line 16):

(my_t, i.n) (9,5) (9,6) (9,8) (9,9) (9,9)

CPUt FAI_t i get_n i get_n i get_n i pull i

loc ({t})E

Verifying the linearizability and starvation-freedom
of the ticket lock is equivalent to proving that under a fair
hardware scheduler εhs, the ticket lock implementation is
a termination-sensitive contextual refinement of its atomic
specification.20 There are two main proof obligations: (1) the
lock guarantees mutual exclusion, and (2) the acq operation
eventually succeeds.

The mutual exclusion property relies on the fact that, at
any time, only the thread whose ticket t is equal to the current
serving ticket (i.e., n) can hold the lock, and each thread’s
ticket t is unique. Here, we must also handle potential inte-
ger overflows for t and n. As long as the total number of CPUs
(i.e., #CPU) in the machine is less than 232 (determined
by the uint type), this uniqueness property can be ensured.
Then, it is safe to pull the shared memory associated with
the lock i to the local copy at line 16. Before releasing the
lock, the local copy is pushed back to the shared memory
at line 19.

The starvation-freedom property relies on the fairness of
the scheduler, that is, any CPU can be scheduled within n
steps for some n. We define invariant INV

lock
 over the environ-

ment context to say that environmental lock-holders will

(a) physical
memory

CR3

… … … …

dir# pt# offset 32-bit virtual address

(b) PMapi

… … … …

… …
virtual

address
space i

physical
memory hidden hidden

Figure 6. (a) Hardware MMU using two-level page map; (b) virtual address space i set up by page map .

OCTOBER 2019 | VOL. 62 | NO. 10 | COMMUNICATIONS OF THE ACM 97

register (EIP) and stack pointer register (ESP) are saved and
restored in this procedure, this kernel context switch func-
tion does not satisfy the C calling convention and has to be
verified at the assembly level. Based on this context switch
function and the shared queue library, we can verify three
scheduling primitives: yield, sleep, and wakeup (see Figure 7).

Thread-local machine models can be built based on the
thread management layers. The first step is to extend the
environment context with a software scheduler (i.e., abstract-
ing the concrete scheduling procedure), resulting in a new
environment context εss. The scheduling primitives gener-
ate the and events. εss responds
with the next thread ID to execute. The second step is to
introduce the active thread set to represent the active threads
on the active CPU, and extend εss with the context threads,
that is, the rest of the threads running on the active CPU.
The composition structure is similar to the one of Lemma 3.
In this way, higher layers can be built upon a thread-local
machine with a single active thread on the active CPU (see
Figure 5).

Condition variable (CV) is a synchronization object
that enables a thread to wait for a change to be made to a
shared state. Standard Mesa-style CVs18 do not guaran-
tee starvation-freedom: a thread waiting on a CV may not
be signaled within a bounded number of execution steps.
We have implemented a starvation-free CV using condi-
tion queues as shown by the popular, most up-to-date OS
textbook.2 However, we have found a bug in the FIFOBBQ
implementation as shown in that textbook. Their system
can get stuck in two cases: (1) when the destroyed CV is kept
inside the remove queue (rmvQ), which will block the insert
call to wake up the proper waiter; (2) when multiple CVs are
woken up within a short period and the lock-holding CV
thread is not the head of rmvQ, that thread will be removed
from rmvQ and return to sleep, but will never be woken up
again. We fixed this issue by postponing the removal of the
CV thread from rmvQ, until woken thread that is allowed
to proceed finishes its work; this thread is now responsible
for removing itself from rmvQ, as well as waking up the next
thread in rmvQ.

5. EVALUATION
5.1. Proof effort and cost of change
Overall, our certified mC2 kernel consists of 6500 lines of C
and x86 assembly. The concurrency extensions were com-
pleted in about two person-years. The new concurrency
framework (to specify, build, and link certified concurrent
abstraction layers) took about one person-year to develop.
We extended the certified sequential mCertiKOS kernel5, 8, 10
(which took another two person-years to develop in total)
with various features, such as dynamic memory manage-
ment, container support for controlling resource consump-
tion, Intel hardware virtualization support, shared memory
IPC, two-copy synchronous IPC, ticket and MCS locks, new
schedulers, condition variables, etc. Some of these features
were initially added in the sequential setting but later ported
to the concurrent setting. The verification of these features
was completed around one person-year. During this develop-
ment process, many of our certified layers underwent many
modifications and extensions. The CertiKOS framework
allows such incremental development to take place much
more smoothly. For example, certified layers in the sequen-
tial kernel can be directly ported to the concurrent setting if
they only access private state. We have also adapted the work
by Chen et al.5 on interruptible kernels with device drivers to
our multicore model.

Regarding the proof effort, there are 5249 lines of addi-
tional specifications for the various kernel functions, and
about 40K LOC used to define auxiliary definitions, lemmas,
theorems, and invariants. Additionally, there are 50K lines
of proof scripts for proving the newly added concurrency
features.

5.2. Bugs found
Other than the FIFOBBQ bug, we have also found a few other
bugs during verification. Our initial ticket-lock implementa-
tion contains a particularly subtle bug: the spinning loop body
(line 15 in Figure 1) was implemented as while(get_n() < my_t).
This passed all our tests, but during the verification, we found
that it did not satisfy the atomic specification as the ticket
field might overflow. For example, if the next ticket number t
is (232−1), an overflow will occur in acq (line 14 in Figure 1) and
the returned ticket my_t will equal to 0. In this case, current-
serving number n is not less than my_t and acq gets the lock
immediately, violating the mutual exclusion property.

5.3. Performance evaluation
Although performance is not the main emphasis of this
work, we have run a number of micro and macro bench-
marks to measure the speedup and overhead of mC2, and to
compare mC2 with existing systems such as KVM and seL4.
All experiments have been performed on a machine with
one Intel Xeon CPU with four cores running at 2.8 GHz. As
the power control code has not been verified, we disabled
the turbo boost and power management features of the
hardware during experiments.

5.4. Concurrency overhead
The runtime overhead introduced by concurrency in mC2
mainly comes from the latency of spinlocks.

sleep / yield2

sleep

wakeup by
CPU0

wakeup by
CPU1

SleepQs

PendQ

ReadyQ

Running ThreadCPU0 1

1

1

1

3 yield

yield

2

Figure 7. Each CPU has a private ready queue ReadyQ and a shared
pending queue PendQ. The environmental CPUs can insert threads
to the current CPU’s PendQ. The mC2 kernel also provides a set of
shared sleeping queues SleepQs. The yield primitive moves a thread
from PendQ to ReadyQ and then switches to the next ready thread.
The sleep primitive simply adds the running thread to a SleepQ
and runs the next ready thread. The wakeup primitive contains two
cases. If the thread to be woken up belongs to the current CPU, it
will be added to the corresponding ReadyQ. Otherwise, the thread is
added to PendQ of the CPU it belongs to.

research highlights

98 COMMUNICATIONS OF THE ACM | OCTOBER 2019 | VOL. 62 | NO. 10

6. RELATED WORK
Dijkstra9 proposed to “realize” a complex program by
decomposing it into a hierarchy of linearly ordered abstract
machines. Based on this idea, Gu et al.10 developed new
languages and tools for building certified abstraction lay-
ers with deep specifications, and showed how to apply the
layered methodology to construct certified (sequential) OS
kernels in Coq. Costanzo et al.8 showed how to prove secu-
rity properties over a deep specification of a certified OS
kernel, and then propagate these properties from the speci-
fication level to its correct assembly-level implementation.
Chen et al.5 extended the layer methodology to build certi-
fied kernels and device drivers running on multiple logi-
cal CPUs. They treated the driver stack for each device as if
it were running on a logical CPU dedicated to that device.
Logical CPUs do not share any memory, and are all eventu-
ally mapped onto a single physical CPU. None of these sys-
tems, however, can support shared-memory concurrency
with fine-grained locking.

The seL4 team17 was the first to verify the functional cor-
rectness and security properties of a high-performance
L4-family microkernel. The seL4 microkernel, however, does
not support multicore concurrency with fine-grained lock-
ing. Peters et al.22 and von Tessin23 argued that for an seL4-
like microkernel, concurrent data accesses across multiple
CPUs can be reduced to a minimum, so a single big kernel
lock (BKL) might be good enough for achieving good perfor-
mance on multicore machines. von Tessin23 further showed
how to convert the single-core seL4 proofs into proofs for a
BKL-based clustered multikernel.

The Verisoft team1 applied the VCC framework7 to for-
mally verify Hyper-V, which is a widely deployed multipro-
cessor hypervisor consisting of 100 kLOC of C code and 5
kLOC of assembly. However, only 20% of the code is veri-
fied7; it is also only verified for function contracts and type
invariants, rather than the full functional correctness prop-
erty. CIVL14 uses the state-machine approach with support
for atomic actions and movers to reduce the proof burden
for concurrent programs. It is implemented as an exten-
sion to Boogie and has been used to verify a concurrent
garbage collector. However, CIVL can only be used to rea-
son about safety rather than liveness. There is a large body of
other work6, 13, 24 showing how to build verified OS kernels,

The mC2 kernel provides two kinds of spinlocks: ticket
lock and MCS lock. They have the same interface and thus
are interchangeable. In order to measure their performance,
we put an empty critical section (payload) under the pro-
tection of a single lock. The latency is measured by taking
a sample of 10000 consecutive lock acquires and releases
(transactions) on each round.

Figure 8a shows the results of our latency measurement.
In the single-core case, ticket locks impose 34 cycles of
overhead, whereas MCS locks impose 74 cycles as shown
in the line chart. As the number of cores grows, the latency
increases rapidly. As the slowdown should be proportional to
the number of cores, to show the actual efficiency of the lock
implementations, we normalize the latency against the base-
line (single core) multiplied by the number of cores (n*t1/tn). As
can be seen from the bar chart, efficiency remains about the
same for MCS locks, but decreases for ticket locks.

Now that we have compared MCS locks with ticket locks,
we present the remaining evaluations in this section using
only the ticket lock implementation of mC2.

5.5. Hypervisor performance
To evaluate mC2 as a hypervisor, we measured the perfor-
mance of some macro benchmarks on Ubuntu 12.04.2 LTS
running as a guest. We ran the benchmarks on Linux as
guest in both KVM and mC2, as well as on the bare metal.
The guest Ubuntu is installed on an internal SSD drive. KVM
and mC2 are installed on a USB stick. We use the standard
4KB pages in every setting—huge pages are not used.

Figure 8b contains a compilation of standard macro
benchmarks: unpacking a Linux 4.0-rc4 kernel archive,
compiling the Linux 4.0-rc4 kernel source, running Apache
HTTPerf on loopback, and the DaCaPo Benchmark 9.12. We
normalize the running times of the benchmarks using the
bare metal performance as a baseline (100%). The overhead
of mC2 is moderate and comparable to KVM. In some cases,
mC2 performs better than KVM; we suspect this is because
KVM has a Linux host and thus has a larger cache footprint.
For benchmarks with a large number of file operations, such
as Uncompress Linux source and Tomcat, mC2 performs
worse. This is because mC2 exposes the raw disk interface
to the guest via VirtIO (instead of passing it through), and its
disk driver does not provide good buffering support.

(a)

0%

20%

40%

60%

80%

100%

0

300

600

900

1200

1 2 3 4

ac
tu

al
 e

ffi
ci

en
cy

-
ba

r
gr

ap
h

la
te

nc
y

(c
yc

le
s)

-
lin

e
gr

ap
h

of cores
MCS lock ticket lock MCS lock ticket lock

(b)
90%

100%

110%

120%

130%

140%

150% mC2

kvm

368%

DaCaPo Benchmark SetUnco
m

pre
ss

 L
inux

Com
pile

 L
inux

Apac
he H

TTPer
f

Avr
or

a
Bat

ik
Ecli

pse Fop H2
Jyt

hon
Luindex

Luse
ar

ch
PM

D
Sunflow
Tom

ca
t

Tra
deb

ea
ns

Tra
des

oa
p

Xal
an

Figure 8. (a) The comparison between actual efficiency of ticket lock and MCS lock implementations in mC2; (b) normalized performance for
macro benchmarks running over Linux on KVM versus Linux on mC2; the baseline is Linux on bare metal; a smaller ratio is better.

OCTOBER 2019 | VOL. 62 | NO. 10 | COMMUNICATIONS OF THE ACM 99

practical system for verifying
concurrent C. In Proceedings of 22nd
International Conference on Theorem
Proving in Higher Order Logics (2009),
23–42.

 8. Costanzo, D., Shao, Z., Gu, R. End-
to-end verification of information-
flow security for C and assembly
programs. In Proceedings
of 2016 ACM Conference on
Programming Language Design and
Implementation (PLDI’16) (2016),
648–664.

 9. Dijkstra, E.W. The structure of
the “THE”-multiprogramming
system. Commun. ACM, (1968),
341–346.

 10. Gu, R., Koenig, J., Ramananandro, T.,
Shao, Z., Wu, X., Weng, S.-C., Zhang, H.,
Guo, Y. Deep specifications and
certified abstraction layers. In
Proceedings of 42nd ACM Symposium
on Principles of Programming
Languages (POPL’15) (2015),
595–608.

 11. Gu, R., Shao, Z., Chen, H., Wu, X.N.,
Kim, J., Sjöberg, V., Costanzo, D.
Certikos: An extensible architecture
for building certified concurrent
OS kernels. In Proceedings of
12th USENIX Symposium on
Operating Systems Design and
Implementation (OSDI’16) (2016),
653–669.

 12. Gu, R., Shao, Z., Kim, J., Wu, X.N.,
Koenig, J., Sjöberg, V., Chen, H.,
Costanzo, D., Ramananandro, T.
Certified concurrent abstraction
layers. In Proceedings of the 39th
ACM SIGPLAN Conference on
Programming Language Design
and Implementation (2018), ACM,
646–661.

 13. Hawblitzel, C., Howell, J., Lorch, J.R.,
Narayan, A., Parno, B., Zhang, D.,
Zill, B. Ironclad apps: End-to-end
security via automated full-system
verification. In Proceedings of
11th USENIX Symposium on
Operating Systems Design and
Implementation (OSDI’14) (2014),
165–181

 14. Hawblitzel, C., Petrank, E., Qadeer, S.,
Tasiran, S. Automated and modular
refinement reasoning for concurrent
programs. In International
Conference on Computer Aided

Verification (2015), Springer,
449–465.

 15. Herlihy, M., Shavit, N. The Art of
Multiprocessor Programming. Morgan
Kaufmann, 2008.

 16. Kim, J., Sjöberg, V., Gu, R., Shao, Z.
Safety and liveness of MCS lock—
Layer by layer. In Asian Symposium
on Programming Languages
and Systems (2017), Springer,
273–297.

 17. Klein, G., Elphinstone, K., Heiser, G.,
Andronick, J., Cock, D., Derrin, P.,
Elkaduwe, D., Engelhardt, K.,
Kolanski, R., Norrish, M., Sewell, T.,
Tuch, H., Winwood, S. seL4: Formal
verification of an OS kernel. In
Proceedings of 22nd ACM
Symposium on Operating Systems
Principles (SOSP) (2009), ACM,
207–220.

 18. Lampson, B.W. Experience with
processes and monitors in Mesa.
Commun. ACM 23, 2 (1980).

 19. Leroy, X. Formal verification of a
realistic compiler. Commun. ACM 52,
7 (2009), 107–115.

 20. Liang, H., Feng, X. A program logic
for concurrent objects under fair
scheduling. In Proceedings of 43rd
ACM Symposium on Principles of
Programming Languages (POPL’16)
(2016), 385–399.

 21. Mellor-Crummey, J.M., Scott, M.L.
Algorithms for scalable
synchronization on shared-memory
multiprocessors. ACM T. Comput.
Syst. 9, 1 (1991), 21–65.

 22. Peters, S., Danis, A., Elphinstone, K.,
Heiser, G. For a microkernel, a big
lock is fine. In APSys ‘15 Asia Pacific
Workshop on Systems, Tokyo, Japan
(2015).

 23. von Tessin, M. The clustered
multikernel: An approach to formal
verification of multiprocessor
operating-system kernels. PhD thesis,
School of Computer Science and
Engineering, The University of New
South Wales (2013).

 24. Xu, F., Fu, M., Feng, X., Zhang, X.,
Zhang, H., Li, Z. A practical verification
framework for preemptive OS kernels.
In Proceedings of 28th International
Conference on Computer-Aided
Verification (CAV), Part II (2016),
59–79.

hypervisors, file systems, device drivers, and distributed
systems, but they do not address the issues of shared mem-
ory concurrency.

7. CONCLUSION
We have presented a novel extensible architecture for
building certified concurrent OS kernels that not only have
an efficient assembly implementation, but also machine-
checkable contextual correctness proofs. OS kernels devel-
oped using our layered methodology also come with a
clean, rigorous, and layered specification of all kernel com-
ponents. We show that building certified concurrent ker-
nels is not only feasible but also quite practical. Our layered
approach to certified concurrent kernels replaces the hard-
ware-enforced “red line” with a large number of abstrac-
tion layers enforced via formal specification and proofs. We
believe this will open up a whole new dimension of research
efforts toward building truly reliable, secure, and extensi-
ble system software.

Acknowledgments
We would like to acknowledge the contribution of many
former and current team members on various CertiKOS-
related projects at Yale, especially Tahina Ramananandro,
Shu-Chun Weng, Liang Gu, Mengqi Liu, Quentin
Carbonneaux, Jan Hoffmann, Hernán Vanzetto, Bryan
Ford, Haozhong Zhang, and Yu Guo. We thank Xupeng Li,
John Zhuang Hui, Xuguang Patrick Dai, members of the
VeriGu lab at Columbia, and anonymous referees for help-
ful comments and suggestions that improved this research
and the implemented tools. This research is based on the
work supported in part by NSF grants 1065451, 1521523,
and 1715154 and DARPA grants FA8750–12–2–0293,
FA8750–16–2–0274, and FA8750–15-C-0082. It is also sup-
ported in part by Qtum Foundation and Baidu USA. The
U.S. Government is authorized to reproduce and distrib-
ute reprints for Governmental purposes notwithstanding
any copyright notation thereon. The views and conclu-
sions contained herein are those of the authors and should
not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of
DARPA or the U.S. Government.

References

 1. Alkassar, E., Hillebrand, M.A.,
Paul, W.J., Petrova, E. Automated
verification of a small hypervisor.
In Proceedings of 3rd International
Conference on Verified Software:
Theories, Tools, Experiments (VSTTE)
(2010), 40–54.

 2. Anderson, T., Dahlin, M. Operating
Systems Principles and Practice.
Recursive Books, 2011
(Figure 5.14).

 3. Belay, A., Bittau, A., Mashtizadeh, A.,
Mazières, D., Kozyrakis, C. Dune: Safe
user-level access to privileged CPU
features. In Proceedings of 10th
USENIX Symposium on Operating
Systems Design and Implementation
(OSDI’12) (2012), 335–348.

 4. Carbonneaux, Q., Hoffmann, J.,
Ramananandro, T., Shao, Z.
End-to-end verification of stack-
space bounds for C programs. In

Proceedings of 2014 ACM Conference
on Programming Language Design
and Implementation (PLDI’14)
(2014), 270–281.

 5. Chen, H., Wu, X., Shao, Z., Lockerman, J.,
Gu, R. Toward compositional
verification of interruptible OS kernels
and device drivers. In Proceedings
of 2016 ACM Conference on
Programming Language Design and
Implementation (PLDI’16) (2016),
431–447.

 6. Chen, H., Ziegler, D., Chajed, T.,
Chlipala, A., Kaashoek, M.F.,
Zeldovich, N. Using Crash Hoare logic
for certifying the FSCQ file system. In
Proceedings of 25th ACM Symposium
on Operating System Principles
(SOSP) (2015), 18–37.

 7. Cohen, E., Dahlweid, M., Hillebrand, M.,
Leinenbach, D., Moskal, M., Santen, T.,
Schulte, W., Tobies, S. VCC: A

Ronghui Gu (ronghui.gu@columbia.edu),
Columbia University, New York, NY, USA..

Zhong Shao, Hao Chen, Jieung Kim,
Jérémie Koenig, Xiongnan (Newman)
Wu, and David Costanzo ({zhong.
shao,hao.chen,jieung.kim,jeremie.koenig,
xiongnan.wu,david.costanzo}@yale.edu),
Yale University, New Haven, CT, USA.

Vilhelm Sjöberg (vilhelm.sjoberg@certik.
org), CertiK, Cambridge, MA, USA.

Copyright held by authors/owners. Publication rights licensed to ACM.

