
COQ Mechanization of Featherweight Fortress
with Multiple Dispatch and Multiple Inheritance

Jieung Kim and Sukyoung Ryu

Computer Science Department, KAIST
{gbali,sryu.cs}@kaist.ac.kr

Abstract. In object-oriented languages, overloaded methods with multiple dis-
patch extend the functionality of existing classes, and multiple inheritance al-
lows a class to reuse code in multiple classes. However, both multiple dispatch
and multiple inheritance introduce the possibility of ambiguous method calls that
cannot be resolved at run time. To guarantee no ambiguous calls at run time, the
overloaded method declarations should be checked statically.

In this paper, we present a core calculus for the Fortress programming lan-
guage, which provides both multiple dispatch and multiple inheritance. While
previous work proposed a set of static rules to guarantee no ambiguous calls at
run time, the rules were parametric to the underlying programming language. To
implement such rules for a particular language, the rules should be instantiated for
the language. Therefore, to concretely realize the overloading rules for Fortress,
we formally define a core calculus for Fortress and mechanize the calculus and
its type safety proof in COQ.

Keywords: COQ, Fortress, overloading, multiple dispatch, multiple inheritance,
type system, proof mechanization.

1 Introduction

Most object-oriented programming languages support method overloading: a method
may have multiple declarations with different parameter types. Multiple method decla-
rations with the same name can make the program logic clear and simple. When several
of the overloaded methods are applicable to a particular call, the most specific applica-
ble declaration is selected by the dispatch mechanism.

Several dispatch mechanisms exist for various object-oriented languages. For exam-
ple, the JavaTM programming language [11] uses a single-dispatch mechanism, where
the dynamic type of only a single argument (the receiver of the method) and the static
types of the other arguments are considered for method selection. CLOS [9] uses asym-
metric multiple dispatch, where the dynamic type of each argument is considered in a
specified order (usually left to right) for method selection. Fortress [3] uses symmetric
multiple dispatch, where the dynamic types of all the arguments are equally considered.
Because previous work [24,26,4,13] observed that using static types of arguments or a
particular order of method parameters for method selection often produces confusing
results, we focus on symmetric multiple dispatch throughout this paper.

Multiple inheritance lets a type have multiple super types, which allows the type
to reuse code in its multiple super types, and permits more type hierarchies than what

J.-P. Jouannaud and Z. Shao (Eds.): CPP 2011, LNCS 7086, pp. 264–279, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

COQ Mechanization of FFMM 265

Fig. 1. Example type hierarchy

are allowed in single inheritance. While multiple inheritance provides high expressive
power, it has well-known problems such as “name conflicts” and “state conflicts” [28].
Several object-oriented languages support multiple inheritance by addressing these
problems in different ways. For example, C++ [29] requires programmers specify how
to resolve conflicts between inherited fields. Scala [27] supports multiple inheritance
via traits [28], where the order of super traits resolves any conflicts. Fortress [3] also
provides multiple inheritance via traits, but the order of super traits does not affect the
language semantics. Instead, Fortress traits do not include any fields, which removes the
possibility of state conflicts. Similarly to the dispatch mechanism, we focus on symmet-
ric multiple inheritance in this paper.

However, both multiple dispatch and multiple inheritance introduce the possibility of
ambiguous method calls that cannot be resolved at run time. Consider a type hierarchy
illustrated in Figure 1 in a language with multiple dispatch and multiple inheritance.
The following overloaded method declarations:

collide(Car c, CampingCar cc)

collide(CampingCar cc, Car c)

introduce a possibility of an ambiguous method call due to multiple dispatch. For a
method call collide(cc1, cc2) where both cc1 and cc2 have the CampingCar

type at run time, we cannot select the best method to call because none of the collide
method declarations is more specific than the other. Likewise, the following overloaded
method declarations:

lightOn(Car c)

lightOn(CampingTrailer ct)

introduce a possibility of an ambiguous method call due to multiple inheritance. For a
method call lightOn(cc) where cc has the CampingCar type at run time, we cannot
select the best method to call because none of the lightOnmethod declarations is more
specific than the other.

To break ties between ambiguous method declarations to a call, there should exist
a disambiguating method declaration that is more specific than the ambiguous declara-
tions and also applicable to the call. For example, if we add the following declaration
to the above set of collide method declarations:

collide(CampingCar cc1, CampingCar cc2)

266 J. Kim and S. Ryu

the set would be a valid overloading, and the set of lightOnmethod declarations would
be a valid overloading if it includes the following declaration:

lightOn(CampingCar cc)

Finding such a disambiguating method declaration is not always trivial. While the fol-
lowing set of method declarations seems to be valid because the third declaration is
more specific than the first and second:

tow(Vehicle v, Car c)

tow(Car c, Vehicle v)

tow(CampingCar cc1, CampingCar cc2)

it is not a valid overloading: For a method call tow(c1, c2) where both c1 and c2

have the Car type at run time, we cannot select the best method to call because none
of the first and the second declarations is more specific than the other, and the third
declaration is not even applicable to tow(c1, c2).

Previous work proposed a set of rules to check overloaded method declarations stat-
ically to guarantee no ambiguous calls at run time. The Fortress team designed such
overloading rules and proved that the rules ensure that there exist no ambiguous calls
at run time [4]. While the overloading rules were designed in the context of Fortress,
they were not closely tied to a particular programming language. To make the rules
more concrete enough to be clearly implementable, the team defined a calculus, Core
Fortress with Overloading (CFWO) [3, Appendix A.2], but the calculus was not proved
type sound.

In this paper, we present a core calculus for the Fortress programming language,
Featherweight Fortress with Multiple Dispatch and Multiple Inheritance (FFMM),
which provides both multiple dispatch and multiple inheritance. Unlike CFWO, FFMM
does not support generic types which are orthogonal to the overloading rules as we dis-
cuss in Section 2. We formally define FFMM and mechanize it and its type safety proof
in COQ. While proving the type safety of FFMM in COQ, we found a bug in CFWO
and proposed a fix to it. Our COQ implementation is available online [20].

The remainder of this paper is organized thus. In Section 2, we discuss the overload-
ing rules that are statically checked to guarantee no ambiguous calls at run time. We
formally define such rules in the context of FFMM in Section 3, describe our mecha-
nization of the calculus using COQ in Section 4, and present its type safety proof using
COQ in Section 5. We share our experience of using COQ in the development of FFMM
in Section 6 and discuss the related work in Section 7. Section 8 discusses future work
of our research and concludes.

2 Overloading Rules

To make sure that one can always pick the best method to call among overloaded meth-
ods at run time, the Fortress team devised a set of overloading rules to check stat-
ically [4]. The rules determine whether a set of overloaded declarations is valid by

COQ Mechanization of FFMM 267

considering each pair of declarations in the set independently. A pair of declarations is
a valid overloading if it satisfies one of the following rules:

1. The Exclusion Rule
If the parameter types of the declarations are disjoint types, then the pair is a valid
overloading.

2. The Subtype Rule
If the parameter type of one declaration is a strict subtype of the parameter type of
the other declaration, and the return type of the former is a subtype of the return
type of the latter, then the pair is a valid overloading.

3. The Meet Rule
If the parameter types of the declarations are not in the subtype relation, then the
pair is a valid overloading if there is a declaration whose parameter type is an
intersection type of the parameter types of the declarations.

We refer interested readers to the work of the Fortress team for detailed explanation
of the rules [4]. They proved that the static rules placed on overloaded declarations
are sufficient to guarantee no undefined nor ambiguous calls at run time. While the
overloading rules are clearly described and the overloading resolution is proved to be
unambiguous at run time, there still exists a gap between the rules and a particular
programming language, Fortress.

Because the rules are specified independently for the underlying language, the
Fortress team designed a calculus, CFWO [3, Appendix A.2], to describe the over-
loading rules more closely to the Fortress programming language. However, they did
not prove the type safety of the calculus, and we found a bug in CFWO while we were
working on our calculus as we discuss in Section 3.

To solve the problems arose from the previous approaches, we define a core calculus
for the Fortress programming language, FFMM, which provides both multiple dis-
patch and multiple inheritance. Because CFWO is a strict extension of the Basic Core
Fortress calculus [3, Appendix A.1], it includes generic types and top-level functions.
While generic types can permit various interesting overloadings as the team presents
in their recent work [5], the previous approaches assume that overloaded declarations
should have type parameters that are identical (up to α-equivalence). Therefore, generic
types and top-level functions are orthogonal to the overloading rules presented in [4]
and FFMM does not support generic types nor top-level functions for simplicity. We
formally define FFMM in Section 3, and we mechanize the definition and its type safety
proof in COQ as we present in Sections 4 and 5.

3 FFMM: Featherweight Fortress with Multiple Dispatch
and Multiple Inheritance

In this section, we formally define our calculus FFMM that we mechanize using COQ

in the next section. Due to the space limitation, we describe only the rules that are
closely related to overloaded methods in this paper. The full syntax, static semantics,
and dynamic semantics of FFMM are available from a companion report [21].

268 J. Kim and S. Ryu

p ::=
−→
d e program

d ::= trait T extends {−→T } −→
md end trait declaration

| object O(
−−→
f : τ) extends {−→T } −→

md end object declaration
md ::= m(−−→x: τ): τ= e method declaration
e ::= x parameter

| self self
| O(−→e) object creation
| e.f field access
| e.m(−→e) method invocation

τ ::= T trait type
| O object type

Fig. 2. Syntax of FFMM

3.1 Syntax

The syntax of FFMM is provided in Figure 2. The metavariables T ranges over trait
names; O ranges over object names; m ranges over method names; f ranges over field
names; and x ranges over method parameter names. We write −→x for a (possibly empty)
sequence x1, · · · , xn.

A program consists of a sequence of trait and object declarations followed by a single
top-level expression. Following the precedent set by prior core calculi such as Feather-
weight Java (FJ) [19], we have abided by the restriction that all valid FFMM programs
are valid Fortress programs except that certain simple syntactic abbreviations such as
commas and semicolons must be expanded.

Trait and object declarations in a program may include method declarations. Object
declarations may include field declarations, which are shown as value parameters. Both
traits and objects may extend multiple traits; they inherit the methods provided by the
extended traits. Method declarations in a trait or an object may have the same name;
method declarations may be overloaded.

Valid expressions are parameter references, references to the special identifier self
which is like this in Java, constructor calls, field accesses, and method invocations.
Types are trait types including the top trait Object and object types; note that object
types are leaves of any FFMM type hierarchy.

For brevity, we make several assumptions that are easily checked syntactically: (1)
every trait or object declaration declares a unique name, (2) every trait or object extends
at least one trait, (3) extended traits in every trait or object are different, (4) every field
has a unique name in its defining object, (5) no trait nor object declares Object , (6)
type hierarchies are acyclic, and (7) every variable in type environments is unique.

3.2 Overloading Rules

In this section, we formally define the overloading rules described in prose in Section 2.
The static semantics of FFMM describes how to type-check a given program at compile
time. Type-checking a program consists of checking its trait and object declarations and
the top-level expression:

COQ Mechanization of FFMM 269

Getting visible methods: definedp(C) /inheritedp(C) /visiblep(C) = {−−−−−−−−−−−−−→(m,−→τp → τr,
−→x . e)}

definedp(C) = {(m,−→τp → τr,
−→x . e) | m(−−−→x: τp): τr = e ∈ −→

md}
where C

−→
md end ∈ p

inheritedp(C) = {(m,−→τp → τr,
−→x . e) | (m,−→τp → τr,

−→x . e) ∈ visiblep(T),

there is no τ ′ such that (m,−→τp → τ ′,)∈definedp(C)}
where C extends {−→T } ∈ p

visiblep(C) = definedp(C) ∪ inheritedp(C)

Fig. 3. visiblep function

[T-PROGRAM]
p =

−→
d e p � −→

d ok p; ∅ � e : τ

� p : τ

Type-checking a trait, for example, includes checking a set of method declarations vis-
ible from the trait:

[T-TRAITDEF]
p � −→

T ′ ok p; self : T � −→
md ok p � validMeth(T)

p �trait T extends {−→T ′} −→
md end ok

via the validMeth judgment:

[VALIDMETH]

∀{(md , C), (md ′, C′)} ⊆ visiblep(Co).
md �= md ′, (not same declaration)

md = m(
−−−−→

: τa) : τ r , md ′ = m(
−−−−→

: τa′
) : τ r′

,

p � valid(m, C,
−→
τa → τ r, C′,

−→
τa′ → τ r′

, visiblep(Co))

p � validMeth(Co)

It checks a set of method declarations visible from a trait or object Co, visiblep(Co)
presented in Figure 3, to see whether each pair in the set is a valid overloading. The
metavariable C ranges over both trait and object names.

A pair of declarations md and md ′ is a valid overloading if it satisfies one of the
overloading rules: Exclusion Rule, Subtype Rule, and Meet Rule. The pair is checked by
the valid judgment described in Figure 4. The [VALIDEXC] rule describes the Exclu-
sion Rule. While Fortress allows programmers to declare disjoint types with excludes
clauses, FFMM does not support such clauses for brevity because they are largely or-
thogonal to multiple dispatch. Therefore, a pair of method declarations satisfies the Ex-
clusion Rule when they have different number of parameters. The [VALIDSUBTYR]
and [VALIDSUBTYL] rules describe the Subtype Rule. If the parameter type of one
declaration is a strict subtype of the parameter type of the other declaration, and the re-
turn type of the former is a subtype of the return type of the latter, then the pair satisfies
the Subtype Rule. Finally, the [VALIDMEET] rule describes the Meet Rule. If there is

270 J. Kim and S. Ryu

[VALIDEXC]
|−→τa| �= |

−→
τa′ |

p � valid(m, C,
−→
τa → τ r, C′,

−→
τa′ → τ r′

, S)

[VALIDSUBTYR]

|−→τa| = |
−→
τa′ | C

−→
τa �= C′

−→
τa′

p �
−→
τa′

<:
−→
τa

p � τ r′
<: τ r p � C′ <: C

p � valid(m, C,
−→
τa → τ r, C′,

−→
τa′ → τ r′

, S)

[VALIDSUBTYL]

|−→τa| = |
−→
τa′ | C

−→
τa �= C′

−→
τa′

p � −→
τa <:

−→
τa′

p � τ r <: τ r′
p � C <: C′

p � valid(m, C,
−→
τa → τ r, C′,

−→
τa′ → τ r′

, S)

[VALIDMEET]

l = |−→τa| = |
−→
τa′ | C

−→
τa �= C′

−→
τa′

τa
0 = C τa′

0 = C′

∃(m(
−−−−−→

: τa′′
) : , τa′′

0) ∈ S.

where (l = |
−−→
τa′′ |) ∧ (∀ 0 ≤ i ≤ l. p � meet({τa

i , τa′
i , τa′′

i }, τa′′
i))

p � valid(m, C,
−→
τa → τ r, C′,

−→
τa′ → τ r′

, S)

Fig. 4. Overloading rules

Meet type: p � meet({−→τ }, τ)

[MEET]
τ ′ ∈ {−→τ } p � τ ′ <: −→τ p � ∩ {−→τ } <: τ ′

p � meet({−→τ }, τ ′)

Intersection type: τ ∩ τ = τ

τ1 ∩ τ2 =

⎧
⎪⎪⎨

⎪⎪⎩

τ3 if τ3 <: τ1 ∧ τ3 <: τ2 ∧ τ1 ≮: τ2 ∧ τ2 ≮: τ1

∧ (∀τ4, (τ4 <: τ1 ∧ τ4 <: τ2) → τ4 <: τ3)
τ1 if τ1 <: τ2

τ2 if τ2 <: τ1

Fig. 5. Meet and intersection of types

a disambiguating declaration whose parameter type is the meet of the parameter types
of the declarations in a pair, the pair satisfies the Meet Rule .

Definitions of the meet and the intersection of types are presented in Figure 5. The
meet of a set of types is the most specific type in the set, and the intersection of two
types is the greatest lower bound of them. These definitions serve a key role in the Meet
Rule. As the tow example in Section 1 shows, finding a tie-breaking meet is not trivial.
Actually, the bug we found in CFWO was in its definition of the Meet Rule: CFWO
incorrectly specifies the definition of the meet type and the Meet Rule for multiple
inheritance.

COQ Mechanization of FFMM 271

Applicable definitions: applicablep(m(−→τ), {−−−−−→(md , C)}) = {−−−−−→(md , C)}

applicablep(m(−→τ), S) = {(md , C) | (md , C) ∈ S, md = m(
−−−→
x : τ ′) : , p � −→τ <:

−→
τ ′}

Most specific definitions: mostspecificp({−−−−−→(md , C)}) = {−→md}

mostspecificp ({−−−−−→(md , C)}) =
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

{md i} if |−→md | = n−→
md = m((

−−−−→
: τa)1) : τ r

1 · · · m((
−−−−→

: τa)n) : τ r
n

(md i, Ci) ∈ {−−−−−→(md , C)}
∀ 1 ≤ j ≤ n. (p � −→

τa
i <:

−→
τa

j ∧ p � Ci <: Cj)
∅ Otherwise

Fig. 6. applicablep and mostspecificpfunctions

3.3 Overloading Resolution

When several of the overloaded methods are applicable to a particular call, the most
specific applicable declaration is selected by the dispatch mechanism. The following
rule describes how FFMM evaluates a method invocation at run time:

[R-METHOD]

object O end ∈ p
−−−−−→
type(v′) = −→τ

mostspecificp(applicablep(m(−→τ), visiblep(O))) = {m(−−−→x :) : = e}
p � E[O(−→v).m(

−→
v′)] −→ E[[O(−→v)/self][

−→
v′ /−→x]e]

Among all the visible methods from the receiver O, applicablep(m(−→τ), visiblep(O))
selects the applicable declarations to a method call of name m with arguments of type−→τ . Note that because our dispatch mechanism uses symmetric multiple dispatch, it

considers the dynamic types of all the arguments equally:
−−−−−→
type(v′) = −→τ . Finally,

among the applicable declarations, select the single most specific declaration via the
mostspecificp function.

The definitions of the applicablep and mostspecificp functions are presented in Fig-
ure 6. For a given method name m, the dynamic types of all the arguments −→τ , and a

set of visible methods {−−−−−→(md , C)}, the applicablep function collects all the methods that
have the given name and whose parameter types are super types of the given arguments’
dynamic types from the set of visible methods. The mostspecificp function selects the
best method to call from a given set of applicable methods.

When a program is well typed under the static semantics of FFMM, there are no
undefined nor ambiguous calls at run time. The type safety of FFMM described in
Section 5 guarantees this property. Thanks to the type safety, the mostspecificp function
always picks the single most specific method to call at run time.

272 J. Kim and S. Ryu

Definition validmeet’ (mn: mname) (tys : list typ) (ty : typ) (mS : mSet) : Prop :=
exists2 mdt, mdt \in mS &

((tys = (getartys mdt)) ∧ (ty = (snd mdt)) ∧ (mn = (getmname mdt))).

Inductive valid (mdt1 mdt2 : mdttype) (mS : mSet) : Prop :=
| valid same :

(getmid mdt1) = (getmid mdt2)→
(snd mdt1) = (snd mdt2)→
valid mdt1 mdt2 mS

| valid diff name :
(getmname mdt1) �= (getmname mdt2)→
valid mdt1 mdt2 mS

| valid diff arg len :
(getmid mdt1) �= (getmid mdt2) ∨ (snd mdt1) �= (snd mdt2)→
(getmname mdt1) = (getmname mdt2)→
(getenvlen mdt1) �= (getenvlen mdt2)→
valid mdt1 mdt2 mS

| valid sub ty r :
(getmid mdt1) �= (getmid mdt2) ∨ (snd mdt1) �= (snd mdt2)→
(getartys mdt1) �= (getartys mdt2) ∨ (snd mdt1) �= (snd mdt2)→
(getmname mdt1) = (getmname mdt2)→
(getenvlen mdt1) = (getenvlen mdt2)→
sub tys (getartys mdt2) (getartys mdt1) →
sub ty (getrty mdt2) (getrty mdt1) →
sub ty (snd mdt2) (snd mdt1) →
valid mdt1 mdt2 mS

| valid sub ty l :
(getmid mdt1) �= (getmid mdt2) ∨ (snd mdt1) �= (snd mdt2)→
(getartys mdt1) �= (getartys mdt2) ∨ (snd mdt1) �= (snd mdt2)→
(getmname mdt1) = (getmname mdt2)→
(getenvlen mdt1) = (getenvlen mdt2)→
sub tys (getartys mdt1) (getartys mdt2) →
sub ty (getrty mdt1) (getrty mdt2) →
sub ty (snd mdt1) (snd mdt2) →
valid mdt1 mdt2 mS

| valid meet : ∀ tys ty,
(getmid mdt1) �= (getmid mdt2) ∨ (snd mdt1) �= (snd mdt2)→
(getartys mdt1) �= (getartys mdt2) ∨ (snd mdt1) �= (snd mdt2)→
(getmname mdt1) = (getmname mdt2)→
(getenvlen mdt1) = (getenvlen mdt2)→
˜(sub tys (getartys mdt1) (getartys mdt2))→
˜(sub tys (getartys mdt2) (getartys mdt1))→
is tys (getartys mdt1) (getartys mdt2) tys →
is ty (snd mdt1) (snd mdt2) ty →
validmeet’ (getmname mdt1) tys ty mS→
valid mdt1 mdt2 mS.

Fig. 7. Overloading rules in COQ

COQ Mechanization of FFMM 273

4 FFMM in COQ

To mechanically prove the type safety of FFMM in Section 5, we describe our im-
plementation of FFMM using COQ 8.3 in this section. Our implementation is largely
based on Cast-Free Featherweight Java (CFFJ) by Fraine et al. [18]. Among oth-
ers, the Metatheory library in CFFJ provides auxiliary constructs and properties
of atoms [2] and environments including membership tests, accessors, and uniqueness
guarantee. For our convenience, we extend the library with utility functions mostly for
list manipulation. The full implementation is available online [20].

We implement the seven assumptions described in Section 3.1 in three ways:

– The uniqueness assumptions are implemented by the existing Metatheory li-
brary: (1), (4), and (7)

– We extend the Metatheory library to implement the assumptions on traits and
objects: (2) and (3)

– To separate the concerns of the well-formed programs assumptions, we use a mod-
ule system of COQ [14, Chapter 5]: (5) and (6)

While the COQ implementation of FFMM is very close the FFMM calculus, there are
small differences in the implementation:

1. Unlike Java-like languages which provide only classes, FFMM provides both traits
and objects as we discuss in Section 3. While the calculus does not distinguish be-
tween traits and objects by using the metavariable C in most cases, the implementa-
tion maintains two separate class tables for traits and objects. With two class tables,
we could reuse the existing Metatheory library instead of forking a variant of it
to handle both traits and objects in one class table.

2. While the calculus identifies each method by its name and parameter types, the
implementation introduces a unique identity of type nat for each method. With the
unique identity for every method, we could again reuse the existing Metatheory
library as it is instead of forking a variant of it to use a pair of method name and
parameter types as keys of environments.

3. As the [VALIDMETH] in Section 3 describes, the calculus does not check the over-
loading rules for a pair of method declarations if the pair is the same method or the
pair has different names. However, for simplicity, the implementation checks the
overloading rules for such declarations as Figure 7 illustrates. Unlike the overload-
ing rules of the calculus in Figure 4, the implementation includes two extra cases:
valid same and valid diff name. The valid same constructor specifies that if
we check the overloading rules with a single method declaration and itself, the rules
are vacuously satisfied. The valid diff name constructor specifies that if we check
the overloading rules with a pair of method declarations with different names, again
the overloading rules hold vacuously.

4. While the overloading rules in the calculus are not disjoint, its corresponding im-
plementation is. The [VALIDMEET] rule in the calculus could be satisfied by a pair
of method declarations whose parameter types and return types are in the subtype
relation. However, the valid meet case is not satisfied by such a pair. To make the

274 J. Kim and S. Ryu

implementation of the overloading rules deterministic, the valid meet constructor
specifies that two method declarations are not in the subtype relation:

˜(sub tys (getartys mdt1) (getartys mdt2))→
˜(sub tys (getartys mdt2) (getartys mdt1))→

Because the differences in the calculus and the implementation are minor implementa-
tion details, we believe that we faithfully implement FFMM in COQ.

5 Type Safety Proof

We prove the type safety of the FFMM calculus in COQ. Among approximately 150
facts, lemmas, and theorems in our proof, we describe only those that are closely related
to multiple dispatch and multiple inheritance.

First, the following lemma guarantees that, in a well-typed program, every non-
empty set of applicable methods always includes the most specific method:

Lemma 1. Suppose that p is well typed. If applicablep(m(−→τ), visiblep(C))={−−−→md , C}
and {−−−→md , C} �= ∅, then there exists md ′ such that mostspecificp({

−−−→
md , C}) = {md ′}.

It implies that there are no ambiguous method calls at run time in FFMM. In a well-
typed program, each method call has at least one applicable method. In other words,
the set of applicable methods to a call is not empty as guaranteed by the typing rule for
method invocations as follows:

[T-METHOD]

p ; Γ � eo : τo p ; Γ � −→e : −→τ
mostspecificp(applicablep(m(−→τ), visiblep(τo))) = {m() : τr }

p ; Γ � eo.m(−→e) : τr

It implies that there are no undefined method calls at run time in FFMM. This lemma
plays an important role in the proofs of the following two lemmas:

Lemma 2. Let p be well typed. If mostspecificp(applicablep(m(
−→
τ ′), visiblep(C))) =

{m(
−−−−→
x′ : τa′): τr ′=e′} and p � −→τ <:

−→
τ ′ for some −→τ , then there exists m(

−−−→
x: τa): τr=e

such that mostspecificp(applicablep(m(−→τ), visiblep(C))) = {m(
−−−→
x: τa): τr= e} and

p � τr <: τr ′.

Lemma 3. Let p be well typed. If mostspecificp(applicablep(m(−→τ), visiblep(C′))) =

{m(
−−−−→
x′ : τa′): τr ′= e′} and p � C <: C′ for some C, then there exists m(

−−−→
x: τa): τr=e

such that mostspecificp(applicablep(m(−→τ), visiblep(C))) = {m(
−−−→
x: τa): τr= e} and

p � τr <: τr ′.

These lemmas state that dynamically selecting a method that is more specific than the
statically chosen method is type safe. They serve an important role in proving that term
substitutions preserve typing:

COQ Mechanization of FFMM 275

Table 1. COQ mechanization of CFFJ, FBCF, and FFMM

Language
Metatheory Calculus Type Safety Proof Total

Spec Proofs Spec Spec Proofs Spec Proofs

CFFJ 114 158 164 249 338 527 496
FBCF 114 158 226 233 348 573 506
FFMM 136 203 402 742 1786 1280 1989

Lemma 4. Suppose that p is well typed. If p ; Γ−−→x: τ � e : τ and p ; Γ � −→
e′ :

−→
τ ′ , and

p � −→
τ ′ <: −→τ , then p ; Γ � [

−−→
e′/x]e : τ ′ for some τ ′such that p � τ ′ <: τ .

Finally, the type safety proof of FFMM follows the traditional technique:

Theorem 1 (Progress). Suppose that p is well typed. If p ; ∅ � e : τ , then e is a value
or there exists some e′ such that p � e −→ e′ .

The Progress theorem is proved by induction on the derivation of p; ∅ � e : τ . The most
interesting part is the [T-METHOD] case where we find a witness e′ using the previous
lemmas.

Theorem 2 (Preservation). Suppose that p is well typed. If p ; Γ � e : τ and
p � e −→ e′, then p ; Γ � e′ : τ ′ where p � τ ′ <: τ .

The type safety theorem is immediate from Theorem 1 and Theorem 2:

Theorem 3 (Type Safety). Suppose that p is well-typed. If p; ∅ � e : τ and p � e−→∗v,
then p ; ∅ � v : τ ′ and p � τ ′ <: τ .

The full proof of all the facts, lemmas, and theorems in COQ is available online [20].

6 Lessons

In this section, we share our experience and lessons from mechanizing the type sound-
ness of FFMM.

6.1 Extensibility of COQ Mechanization

Before FFMM, we mechanized Featherweight Basic Core Fortress (FBCF) [22], a very
small core of the Fortress programming language, in COQ. It supports both traits and
objects like FFMM, but it does not provide multiple dispatch nor multiple inheritance.
Its mechanization heavily relies on the implementation of CFFJ. Table 1 compares the
line numbers of the COQ implementations of CFFJ, FBCF, and FFMM. While the size
of the FBCF implementation is similar to that of the CFFJ implementation, the size of
the FFMM implementation is almost three times bigger than them.

While FBCF provides method overriding and single inheritance, FFMM supports
method overloading and multiple inheritance. Similarly to CFFJ, FBCF uses the
mtypep and mbodyp functions for method lookup: it traverses up the type hierarchy
one by one until it finds the intended method. On the contrary, FFMM uses the visiblep

function for method lookup: it collects all the visible methods first instead of traversing
up the type hierarchy.

276 J. Kim and S. Ryu

We observed that adding multiple inheritance to FFMM was much easier and natural
than adding it to FBCF. We first tried to extend FBCF by generalizing the mtypep and
mbodyp functions to support multiple inheritance, but it became easily exponential.
Extending FFMM with multiple inheritance amounts to collecting all the super types
before collecting the visible methods via the visiblep function, which does not require
much code changes.

6.2 Witness Finding

When a rule in FFMM is not algorithmic, finding a witness to mechanize the rule in
COQ could be not trivial. For example, in the following subtype transitivity rule:

[S-TRANS]
p � τ1 <: τ2 p � τ2 <: τ3

p � τ1 <: τ3

the premise uses τ2 that does not appear in the conclusion. Therefore, when we prove
a statement including subtype relations, we should be able to find a witness for the
[S-TRANS] case. Consider the following fact:

Fact sub ty implies visible super set: ∀ ty ty’ mS mS’,
sub ty ty ty’ →
visible ty’ mS’ →
visible ty mS →
(∀ mdt, mdt \in mS’ → mdt \in mS).

which states that “If ty is a subtype of ty’, visiblep(ty’) = mS’, and visiblep(ty) = mS,
then mS’ is a subset of mS.” Proving the above fact by induction on the derivation of
sub ty ty ty’ fails to find a witness for the [S-TRANS] case: while COQ has to find
a witness of visiblep(ty”) for some ty” that is a subtype of ty’ and a supertype of ty,
two method sets, mS’ and mS, are already bound to two types, ty’ and ty, respectively.
Moreover, the fact statement does not specify how to find a set of visible methods for a
certain type that is not mentioned in the statement such as ty”.

Instead, we need to restate the above fact as follows:

Fact sub ty implies visible super set: ∀ ty ty’ mS’,
sub ty ty ty’ →
visible ty’ mS’ →
exists2 mS, visible ty mS & (∀ mdt, mdt \in mS’ → mdt \in mS).

By using exists2 in the induction hypothesis, COQ can find a witness to prove the
[S-TRANS] case.

7 Related Work

Several object-oriented languages provide multiple dispatch. As we discussed in Sec-
tion 1, there are two camps in multiple dispatch: asymmetric multiple dispatch and sym-
metric multiple dispatch. Languages supporting asymmetric multiple dispatch such as

COQ Mechanization of FFMM 277

CLOS [9] and Dylan [1] distinguish method arguments to eliminate the possibility of
ambiguous method calls. However, languages with symmetric multiple dispatch such
as Nice [10] and Fortress [3] treat all the arguments equally, and they provide some
restrictions to guarantee no ambiguous calls at run time.

Some languages support symmetric multiple dispatch with static rules on overloaded
method declarations. Castagna et al. [12] proposed the λ&-calculus, an extension of the
typed lambda calculus with overloaded functions, and presented constraints to ensure
that for each call site, there exists a unique best method to call at run time. Similarly,
the Fortress team [4] proposed static rules on overloaded methods in the context of the
Fortress type system. Millstein and Chambers designed the Dubious [24] language and
restrictions to ensure the modular type safety in the presence of symmetric multiple
dispatch.

Researchers have proposed extensions of the Java programming language with sym-
metric multiple dispatch. Clifton et al. [13] presented MultiJava which adds symmetric
multiple dispatch and open classes to Java. Lorenzo et al. [7,8] proposed Featherweight
Java with Multi-methods (FJM) and proved its type soundness. Lievens and Harri-
son [23] proposed a very similar approach to FJM but they included casting expressions
that are omitted in FJM. None of these extensions support multiple inheritance.

Type safety proofs of several languages are mechanized in COQ. Dubois [17] proved
type soundness of ML [25] using COQ, Fraine et al. [18] proved the type safety of
CFFJ, Delaware et al. [16] verified the type soundness of Lightweight Feature Java, a
subset of Java extended with support for features, and Cremet and Altherr [6,15] mech-
anized the type safety of FGJΩ, an extension of FGJ with variables representing type
constructors. However, none of these mechanizations of Java-like languages provide
multiple dispatch nor multiple inheritance.

8 Conclusion and Future Work

We present a core calculus for the Fortress programming language with multiple dis-
patch and multiple inheritance. The calculus formally specifies the static restrictions
on valid overloaded method declarations. For a well-typed program, which satisfies the
overloading rules statically, there are no undefined nor ambiguous calls at run time. We
mechanize the calculus and prove its type safety in COQ. As far as we know, our work
is the first mechanized calculus of multiple dispatch in the presence of multiple inheri-
tance, and we believe that our work is adaptable to any object-oriented languages with
multiple dispatch and multiple inheritance.

We are planning to extend the calculus with more features in Fortress and mech-
anize the extended calculus and its type safety proof. First, we are planning to add
excludes clauses to the calculus so that the Exclusion Rule can allow more meth-
ods as valid overloadings. Secondly, using the Fortress team’s recent work on valid
overloadings of parametrically polymorphic methods [5], we will extend the calculus
to permit overloadings on generic methods. Finally, we will support the Fortress mod-
ule system so that the calculus can faithfully capture the core expressive power of the
Fortress overloading mechanism.

278 J. Kim and S. Ryu

Acknowledgments. This work is supported in part by the Engineering Research Cen-
ter of Excellence Program of Korea Ministry of Education, Science and Technology
(MEST) / National Research Foundation of Korea(NRF) (Grant 2011-0000974).

References

1. Dylan, http://www.opendylan.org/
2. Metatheory Library: Atom,

http://www.cis.upenn.edu/ plclub/popl08-tutorial/
code/coqdoc/Atom.html

3. Allen, E., Chase, D., Hallett, J.J., Luchangco, V., Maessen, J.-W., Ryu, S., Steele Jr., G.L.,
Tobin-Hochstadt, S.: The Fortress Language Specification Version 1.0 (March 2008)

4. Allen, E., Hallett, J.J., Luchangco, V., Ryu, S., Steele Jr., G.L.: Modular Multiple Dispatch
with Multiple Inheritance. In: Proceedings of the 2007 ACM Symposium on Applied Com-
puting, New York, NY, USA, pp. 1117–1121. ACM (2007)

5. Allen, E., Hilburn, J., Kilpatrick, S., Ryu, S., Chase, D., Luchangco, V., Steele Jr., G.L.:
Type-checking Modular Multiple Dispatch with Parametric Polymorphism and Multiple In-
heritance. In: Proceedings of the 26th ACM SIGPLAN Conference on Object-Oriented Pro-
gramming Systems Languages and Applications. ACM (2011)

6. Altherr, P., Cremet, V.: Adding Type Constructor Parameterization to Java. In: Formal Tech-
niques for Java-like Programs (2007)

7. Bettini, L., Capecchi, S., Venneri, B.: Featherweight Java with Multi-methods. In: Proceed-
ings of the 5th International Symposium on Principles and Practice of Programming in Java,
New York, NY, USA, pp. 83–92. ACM (2007)

8. Bettini, L., Capecchi, S., Venneri, B.: Featherweight Java with Dynamic and Static Over-
loading. Science of Computer Programming 74, 261–278 (2009)

9. Bobrow, D.G., DiMichiel, L.G., Gabriel, R.P., Keene, S.E., Kiczales, G., Moon, D.A.: Com-
mon Lisp Object System Specification. ACM SIGPLAN Notices, 23 (September 1988)

10. Bonniot, D., Keller, B., Barber, F.: The Nice user’s manual (2003),
http://nice.sourceforge.net/NiceManual.pdf

11. Bracha, G., Steele, G., Joy, B., Gosling, J.: JavaTM Language Specification, 3rd edn. Java
Series. Addison-Wesley Professional (July 2005)

12. Castagna, G., Ghelli, G., Longo, G.: A Calculus for Overloaded Functions with Subtyping.
SIGPLAN Lisp Pointers 1, 182–192 (1992)

13. Clifton, C., Leavens, G.T., Chambers, C., Millstein, T.: MultiJava: Modular Open Classes
and Symmetric Multiple Dispatch for Java. In: Proceedings of the 15th ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applications, New
York, NY, USA, pp. 130–145. ACM (2000)

14. The Coq Development Team. The Coq Proof Assistant, http://coq.inria.fr/
15. Cremet, V., Altherr, P.: FGJ-ω in Coq (2007),

http://lamp.epfl.ch/˜cremet/FGJ-omega
16. Delaware, B., Cook, W.R., Batory, D.: Fitting the Pieces Together: a Machine-checked Model

of Safe Composition. In: Proceedings of the the 7th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on The Foundations of Soft-
ware Engineering, ESEC/FSE 2009, New York, NY, USA, pp. 243–252. ACM (2009)

17. Dubois, C.: Proving ML Type Soundness within COQ. In: Aagaard, M.D., Harrison, J. (eds.)
TPHOLs 2000. LNCS, vol. 1869, pp. 126–144. Springer, Heidelberg (2000)

18. De Fraine, B., Ernst, E., Südholt, M.: Cast-Free Featherweight Java (2008),
http://soft.vub.ac.be/˜bdefrain/featherj

http://www.opendylan.org/
http://www.cis.upenn.edu/~plclub/popl08-tutorial/code/coqdoc/Atom.html
http://www.cis.upenn.edu/~plclub/popl08-tutorial/code/coqdoc/Atom.html
http://nice.sourceforge.net/NiceManual.pdf
http://coq.inria.fr/
http://lamp.epfl.ch/~cremet/FGJ-omega
http://soft.vub.ac.be/~bdefrain/featherj

COQ Mechanization of FFMM 279

19. Igarashi, A., Pierce, B., Wadler, P.: Featherweight Java: A Minimal Core Calculus for
Java and GJ. In: Meissner, L. (ed.) Proceedings of the 1999 ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages & Applications (OOPSLA 1999),
vol. 34(10), pp. 132–146. NY (1999)

20. Kim, J.: FFMM in Coq (2011),
http://plrg.kaist.ac.kr/ media/research/software/
ffmm in coq.tar.gz

21. Kim, J., Ryu, S.: FFMM: Featherweight Fortress with Multiple Dispatch and Multiple Inher-
itance. Technical report, KAIST (June 2011)

22. Kim, J., Ryu, S.: Coq Mechanization of Featherweight Basic Core Fortress for Type Sound-
ness. Technical Report ROSAEC-2011-011, KAIST (May 2011)

23. Lievens, D., Harrison, W.: Symmetric Encapsulated Multi-methods to Abstract over Appli-
cation Structure. In: Proceedings of the 2009 ACM Symposium on Applied Computing, New
York, NY, USA, pp. 1873–1880. ACM (2009)

24. Millstein, T., Chambers, C.: Modular Statically Typed Multimethods. In: Information and
Computation, pp. 279–303 (2002)

25. Milner, R., Tofte, M., Harper, R., MacQueen, D.: The Definition of Standard ML (Revised).
The MIT Press (1997)

26. Muschevici, R., Potanin, A., Tempero, E., Noble, J.: Multiple Dispatch in Practice. In: Pro-
ceedings of the 23rd ACM SIGPLAN Conference on Object-Oriented Programming Systems
Languages and Applications, pp. 563–582. ACM (2008)

27. Odersky, M., Spoon, L., Venners, B.: Programming in Scala: A Comprehensive Step-by-Step
Guide, 2nd edn. Artima Inc. (2011)

28. Schärli, N., Ducasse, S., Nierstrasz, O., Black, A.P.: Traits: Composable Units of Behaviour.
In: Cardelli, L. (ed.) ECOOP 2003. LNCS, vol. 2743, pp. 248–274. Springer, Heidelberg
(2003)

29. Stroustrup, B.: The C++ Programming Language. Addison-Wesley (1985)

http://plrg.kaist.ac.kr/_media/research/software/ffmm_in_coq.tar.gz
http://plrg.kaist.ac.kr/_media/research/software/ffmm_in_coq.tar.gz

	COQ Mechanization of Featherweight Fortress with Multiple Dispatch and Multiple Inheritance
	Introduction
	Overloading Rules
	FFMM: Featherweight Fortress with Multiple Dispatch and Multiple Inheritance
	Syntax
	Overloading Rules
	Overloading Resolution

	FFMM in Coq
	Type Safety Proof
	Lessons
	Extensibility of Coq Mechanization
	Witness Finding

	Related Work
	Conclusion and Future Work
	References

