
Journal of Systems Architecture 147 (2024) 103049

A
1

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

SimplMM: A simplified and abstract multicore hardware model for large scale
system software formal verification
Jieung Kim a,∗, Ronghui Gu b, Zhong Shao c

a Inha University, No. 1411, HiTech Center, 100, Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
b Columbia University, Mudd Building, 500 W 120th St, New York, 10027, NY, USA
c Yale University, 51 Prospect St, New Haven, 06511, CT, USA

A R T I C L E I N F O

Keywords:
Hardware architecture
Multicore hardware
System software
Operating system
Software formal verification
Formal semantics
Software correctness
Bug-free software
Concurrency
Sequential consistency
Shared memory concurrency
Linearizability

A B S T R A C T

This paper introduces SimplMM, a novel subsystem within the Certified Concurrent Abstraction Layers (CCAL)
modular software verification framework, designed specifically for fine-grained concurrent software. SimplMM
aims to provide a generic, practical, and realistic multicore machine model for verifying software within the
CCAL framework.

While formal multicore hardware semantics have seen extensive development, their integration with large-
scale software verification has received limited attention. To address this gap, we propose a novel approach: a
toolkit comprising a generic sequentially consistent multicore semantics, contextual refinement templates, and
libraries. These components establish crucial connections between the machine model and verified program
modules (layers) using CCAL. We demonstrate the practicality of our framework by successfully integrating it
with existing large-scale proofs, specifically for CertiKOS running on top of the x86 hardware architecture.

This research significantly advances the field of accurate and efficient concurrent software verification and
development tools for multicore systems. Our provision of a practical and formal multicore machine model,
seamlessly integrated within the CCAL framework, equips developers with a powerful toolkit for large-scale
concurrent software verification. The effectiveness of our approach, validated through successful integration
with existing large-scale proofs such as CertiKOS, establishes a robust foundation for the design and verification
of concurrent software in multicore systems.
1. Introduction

Concurrency has become a pervasive feature in modern computing
systems, especially with the widespread use of multicore processors.
This trend has opened up new opportunities in software development,
but it also introduces significant challenges. Designing and implement-
ing reliable concurrent software can be difficult, as even small errors
can cause significant issues due to its complexity and importance in the
entire software stack. Therefore, it is crucial to have a reliable method
to ensure correctness. While static analysis and testing are commonly
used to detect and reduce software bugs, they may not be sufficient
for guaranteeing bug-free concurrent software due to the possibility of
an infinite number of interleavings. As a result, formal verification, the
strongest but most expensive method for assuring software correctness,
has emerged as a promising approach to addressing this challenge.

Although formal verification has been applied to various types of
system software [1], it is still a complex and resource-intensive task
due to several requirements. For instance, it needs precise definitions

∗ Corresponding author.
E-mail addresses: jieungkim@inha.ac.kr (J. Kim), ronghui.gu@columbia.edu (R. Gu), zhong.shao@yale.edu (Z. Shao).

of the runtime environment, such as multicore machines that operating
system is running on. It also requires modular and abstract verification
interfaces. A modular interface is necessary for scalabiliity by enabling
the software to be easily decomposed, proven, and combined with
other system modules that have been separately verified. An abstract
verification interface provides simple and succinct specifications by
abstracting away the interleaving and hiding unnecessary behaviors
in implementations, such as local operations that do not affect other
instances in concurrent software. Obviously, the verification tool that
provides the simplified interface must justify how the simplification
can be connected with the low-level concrete definitions. Therefore,
it is essential to develop verification methodologies and tools capable
of handling these challenges to improve the applicability of formal
verification.

In order to address the challenges mentioned above, numerous
verification frameworks have been proposed and evaluated [1–17].
vailable online 7 December 2023
383-7621/© 2023 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.sysarc.2023.103049
Received 9 May 2023; Received in revised form 4 December 2023; Accepted 6 Dec
ember 2023

https://www.elsevier.com/locate/sysarc
http://www.elsevier.com/locate/sysarc
mailto:jieungkim@inha.ac.kr
mailto:ronghui.gu@columbia.edu
mailto:zhong.shao@yale.edu
https://doi.org/10.1016/j.sysarc.2023.103049
https://doi.org/10.1016/j.sysarc.2023.103049
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2023.103049&domain=pdf

Journal of Systems Architecture 147 (2024) 103049J. Kim et al.
However, there is still room for improvement in various aspects dis-
cussed, including enhanced automation, rigorous hardware semantics
or compilations, and demonstration of the tool’s applicability to large-
scale software. For instance, MPI-SWS has put forward several verifica-
tion frameworks [10] that facilitate the provision of specifications and
proofs for concurrent software. CompcertTSO [17] offers a verification
toolkit specifically designed for TSO multicore models, building upon
the foundations of Compcert [15], a verified C compiler for sequential
user codes. Nevertheless, the current version of these tools is limited
to handling small examples, and their extensive testing for large-scale
software verification is yet to be carried out.

With this observation, our primary objective is to focus on defining
simple but generic, correct, and practical multicore semantics and pro-
vide a way to use the model in real software verification. To accomplish
this goal, we introduce SimplMM, a subsystem of CCAL [2], a modular
verification framework for concurrent software that includes the well-
known verification case study CertiKOS [5]. CCAL provides a novel
layered approach to support modular development and verification
of large-scale software. It also supports modular compilation for C
programs with CompCertX [18], a variant of the well known verified
C compiler CompCert [19]. With the compiler, CCAL compiles each
C module into the compiled assembly module, the LAsm module,
and links multiple LAsm modules together to form the result of the
compilation for the entire software. As a sub system of the framework,
SimplMM’s main goal is to bridge the gap between the underlying
multicore machine model and LAsm, which is primarily targeting the
machine model with a single concurrency instance, a single core.
Additionally, we address how SimplMM extends the original top-level
theorem of CertiKOS, which states that the compiled assembly code of
CertiKOS faithfully implements its mathematical specifications, encom-
passing all behaviors such as memory accesses from users and system
calls. This achievement is made possible by utilizing the reasonably
concrete and precise x86 machine model based on SimplMM, rather
than relying solely on the LAsm interfaces as in the original version.

Obviously, there are multiple challenges that we must tackle to
achieve our objective. Firstly, we need to define multicore seman-
tics that are simple yet generic, avoiding the complexities of each
instruction and state in the real machine model like x86. Additionally,
we must address how to provide a concurrency abstraction from the
machine model while hiding the behaviors of other instances, such
as other cores. To tackle these challenges, SimplMM employs a multi-
step approach. In the first step, we simplify the machine model and
concurrency by introducing several intermediate machine models while
withholding detailed information about the underlying machines. This
approach reduces the complexity of refinement proofs between ad-
jacent machine models, and the proofs are relatively straightforward
since they are based on highly abstracted state and instruction defi-
nitions. In the second step, we instantiate each machine with precise
details, such as state definitions including registers and memories as
well as individual hardware instructions of x86. By treating these two
steps independently, we can effectively bridge the gap between the
underlying x86 multicore machine model and the simplified machine
model suitable for formal software verification of large-scale code. As
a result, SimplMM can state and prove software correctness not based
solely on the LAsm interface, which relies on concurrent interleaving as
its trust-based computing base, but also on the full multicore machine
model, such as x86.

The main contribution of this paper can be summarized in four
parts.

• We introduce a simple abstract multicore machine model with
sequential consistency, which connects concrete hardware states
and instructions.

• We propose multiple intermediate machine models that abstract
concurrency, addressing the challenge of defining multicore se-
mantics as simply as possible while avoiding the complexity of
2

individual instructions and states in real machine models like x86.
• We show contextual refinements between these intermediate
models, which are general enough to be reused with the instanti-
ated model using concrete states and definitions.

• We extend the correctness proofs of CertiKOS to show correctness
based on our multicore machine model, rather than a single core
machine model like LAsm.

We refer to our machine models and contextual refinement proofs
collectively as SimplMM.

The structure of the rest of this paper is organized as follows.
Section 2 provides a brief overview of CCAL and CertiKOS, two im-
portant related works that serve as the foundation for our research.
We present an overview of the SimplMM framework in Section 3.
The formal syntax, semantics, and refinement proofs of SimplMM are
defined in Sections 4, 5, and 6. In Section 7, we explain how SimplMM
is connected to the LAsm interface and CertiKOS proofs. Section 8
describes the proof efforts of SimplMM. We discuss related works in
Section 9, and present our conclusions in Section 10.

2. Background

2.1. Coq

Coq [20] is a powerful proof assistant tool, and it provides an
environment for developing mathematical facts. It enables us to define
objects, establish statements related to those objects, and construct
proofs to validate the defined statements. Objects in Coq can encom-
pass a wide range of entities, such as integers, sets, trees, functions,
programming languages, functional programs, and more. Statements
are typically formulated using basic predicates and logical connectives.
They can also use objects as their ingredients. Coq’s proof-checking
engine ensures the correctness of all components, including the validity
and consistency of proofs as well as fundamental properties of objects
and statements, such as well-formedness and termination conditions.
The proof engine architecture in Coq is built upon a small trusted
kernel, allowing the utilization of third-party libraries to easily build
bigger systems using Coq while maintaining the integrity of the proofs.

Given these capabilities, Coq serves as an excellent tool for software
verification. Verification engineers can construct program implementa-
tions and specifications using Coq objects. They can then demonstrate
and verify the consistency between the specification and its corre-
sponding implementation, leveraging the assistance of Coq. Verification
efforts in Coq encompass not only functional correctness, as described
earlier, but also the exploration of advanced invariant properties of pro-
grams through statements. However, performing verification using Coq
still requires considerable effort, including defining formal semantics
and compiling the target software’s language. It also necessitates the
development of practical methodologies to efficiently verify large pro-
grams. These challenges have served as inspiration for the development
of CCAL.

2.2. Smallstep library in CompCert

Our work heavily relies on simulation templates within the Small-
step library of CompCert [21]. Despite the use of the term ‘‘simulation’’
in CompCert, its interpretation slightly deviates from the conventional
usage in formal verification. In CompCert, simulation denotes a theorem
that concerns every execution of the top-level C code. It establishes
the existence of an assembly execution corresponding to the C code
and resulting from compilation. However, this method does not capture
how every possible low-level assembly execution will unfold, a critical
aspect of CompCert’s compiler correctness.

To assess this correctness directly, a more conventional simulation
approach can be employed, a bottom-up approach (known as back-
ward simulation.) This method examines every possible execution of

the low-level code. Subsequently, it necessitates the presence of the

Journal of Systems Architecture 147 (2024) 103049J. Kim et al.

o

2

t

t
w
𝑀
𝐿
h
t
c
t
a
c

L
m

o

d
I
i
c
C
s
t
t
a
a
r
t

h
I
s
t
i
𝗈
v
a
a
𝑁

i
a
p

R
t
c
𝐿
r
t
t
a
r
i
s
f

𝑅

w
𝑚
i
a
𝐿
o
S
f
a
C
i
d
e
t

E
h
a
o
b

corresponding execution at the high-level specification, specifically, the
corresponding C code within CompCert. However, this approach is gen-
erally more intricate than the top-down method favored by CompCert.
Evaluation steps in low-level machines often outnumber those of high-
level machines, necessitating the correlation of small changes in the
low-level state with the unchanged state at the high level for a plethora
of cases in the proof.

To streamline this process, CompCert’s simulation template and
method leverage the determinism in their system. Determinism allows
them to invert the direction of simulation with a few facts and to
provide supplementary lemmas. These lemmas translate their top-down
simulation into the conventional bottom-up simulation that others
typically define as simulation. The CompCert source code defines and
proves this auxiliary theorem, aligning with our work, which primar-
ily involves constructing a multicore machine model compatible with
CCAL. Note that CCAL is a verification framework based on a variant
f CompCert.

.3. Certified concurrent abstraction layers

CCAL [2] is a toolkit specifically designed for the verification of
concurrent programs written in C and assembly. While our work,
SimplMM, is a subcomponent of CCAL, we will treat SimplMM as a
separate entity for the sake of simplicity and clarity. CCAL has been
successfully applied in various software formal verification projects [5,
6,16,22]. With the CCAL toolkit, users can effectively break down large
concurrent programs into smaller, manageable pieces and verify each
piece individually. Once each piece has been verified, they can be
composed to establish a top-level correctness theorem for the entire
program. This modular approach empowers users to address the chal-
lenges posed by complex concurrent programs. In this section, we will
provide a concise overview of CCAL and its remarkable capabilities.

CCAL overview. CCAL is a verification approach based on layering.
Each verification piece in CCAL consists of a layer implementation and
two layer interfaces: the underlay and the overlay. The goal of CCAL is
to provide a certified overlay, based on the assumption of the underlay
and the proof of a layer implementation on top of it. The certified
overlay can also serve as a new underlay to provide another overlay
with a corresponding implementation.

To enable this, the underlay provides specifications of interfaces for
the instructions and primitives available to the layer implementation,
while the overlay provides formal specifications for the procedures that
the layer implements. Formally, they can be defined as a tuple (𝐿1,
𝑀 , 𝐿2), along with a refinement proof that demonstrates that the code
𝑀 correctly implements the interface 𝐿2 when executed on a system
specified by the interface 𝐿1. The code 𝑀 consists of a set of functions
written in C and/or assembly, which are compiled into executable code
using CompCertX [18], a modified version of CompCert [19]. CCAL also
supports hierarchical layering, where a higher-level layer (𝐿2, 𝑀 ′, 𝐿3)
can run on top of a lower-level layer (𝐿1, 𝑀 , 𝐿2). Functions in 𝑀 ′ can
call functions in 𝑀 , but the correctness proof only needs to consider
he interface specification 𝐿2.

With its hierarchical layering and linking libraries, CCAL enables
he verification of composite abstraction layers (𝐿1, 𝑀 ⊕ 𝑀 ′, 𝐿3),
here ⊕ is a composite operator in CCAL. The tuple describes how

and 𝑀 ′ together implement the interface 𝐿3 based on the interface
1. However, the convenience does not come without a cost. CCAL
as some limitations, such as disallowing dynamic memory alloca-
ion, which complicates the refinement between memory regions and
orresponding abstract states, and recursive calls, which can disrupt
he layer hierarchy. Despite these limitations, CCAL enables modular
nd hierarchical verification of concurrent programs while maintaining
orrectness guarantees throughout the entire program.

ayer interface. Each layer interface 𝐿 in CCAL is a state transition
3

achine represented as a pair 𝐿 = (𝑠𝑡, 𝑃). Here, 𝑠𝑡 represents the state
f each layer, and 𝑃 is a set of named primitive specifications that define
how each primitive changes the state. The layer state, denoted as 𝑠𝑡, is
efined as a tuple (𝜌, 𝑚𝑒𝑚,𝐴), accurately reflecting the computer’s state.
n the definition, 𝜌 is a register set, which is a set of values - 𝑣𝑎𝑙, 𝑚𝑒𝑚
s a memory, and 𝐴 is an abstract state. Accordingly, the CompCertX
ompiler, which is the compiler of CCAL, also facilitates the same
CAL state definition. Having an abstract state as a component of a
tate makes a significant difference in CCAL and CompCertX compared
o CompCert, where the state definition is (𝜌, 𝑚𝑒𝑚). The abstract state
ype 𝐴 is often a record type that can encompass various abstract types
s subfields, enabling the representation of hardware features, memory
bstractions, and concurrency behaviors. For instance, system-purpose
egisters (e.g., CR3) and a logical log that maintains a history of system
ransitions can be included as abstract types within 𝐴.

The named primitive specifications in 𝑃 describe the abstract be-
avior of C/assembly functions and their transition rules on the state.
n this sense, they can be viewed as simplified functional language-
tyle functions, and they serve as formal specifications corresponding
o C/Assembly implementations with underlays. Each primitive spec-
fication 𝜎 ∈ 𝑃 is a Coq function of type 𝜎 ∶ (𝑣𝑎𝑙∗ × 𝑚𝑒𝑚 × 𝐴) →
𝗉𝗍𝗂𝗈𝗇 (𝑣𝑎𝑙 × 𝑚𝑒𝑚 × 𝐴), where 𝑣𝑎𝑙 and 𝑣𝑎𝑙∗ represent the types of C
alues and lists of values, respectively, for the function’s return value
nd arguments. The return type of the specification is an option type,
s it allows for the description of undefined behaviors by returning a
𝑜𝑛𝑒 value.
Additionally, each layer can use C and assembly instructions defined

n CompCertX. By utilizing all these features, programmers can code C
nd/or assembly functions by using C and/or assembly instructions and
rimitives defined in the underlay to implement the overlay.

efinement proofs. The connection between two layers is established
hrough a simulation-based refinement proof. To prove this for a spe-
ific tuple ((𝑠𝑡1, 𝑃1),𝑀, (𝑠𝑡2, 𝑃2)), where (𝑠𝑡1, 𝑃1) represents the underlay
1 and (𝑠𝑡2, 𝑃2) represents the overlay 𝐿2, a relation 𝑅 is required. This

elation describes how sub-fields of the abstract state in 𝑠𝑡2 correspond
o certain objects stored in the memory 𝑚𝑒𝑚1 of 𝑠𝑡1. We refer to 𝑅 as
he refinement relation. Specifically, if 𝑠𝑡1 is of the form (𝜌1, 𝑚𝑒𝑚1, 𝐴1)
nd 𝑠𝑡2 is of the form (𝜌2, 𝑚𝑒𝑚2, 𝐴2), the high-level specifications in 𝑃2
eference specific sub-fields of the abstract value in 𝐴2, while functions
n 𝑀 over 𝐿1 = (𝑠𝑡1, 𝑃1) operate on parts of 𝑚𝑒𝑚1. The relation 𝑅
pecifies how the sub-fields in 𝐴2 correspond to parts of 𝑚𝑒𝑚1 with the
ollowing type:

𝑖 ∶ 𝑚𝑒𝑚1[𝑖] → 𝐴2[𝑖] → P,

here 𝑅𝑖 represents the definition for a sub-field identified as 𝑖, and
𝑒𝑚1[𝑖] and 𝐴2[𝑖] denote the types of sub-fields associated with the

dentifier 𝑖 in 𝑚𝑒𝑚1 and 𝐴2 respectively. We denote the formal relation
nd consistency of those two layers via refinement proofs as 𝐿1 ⊑𝑅

2. To ensure compatibility with CompCertX, the modified version
f CompCert for CCAL, CCAL utilizes simulation templates in the
mallstep library of CompCert [21]. While this approach limits the
orm of theorems that CCAL can prove, such as requiring termination
nd deterministic properties, it provides the significant advantage that
CAL is fully compatible with CompCert proofs. CCAL employs the

dentical methodology to that of CompCert for simulation proofs to
emonstrate the refinement between abstract layers. This approach
nables the integration of proofs for abstract layers in with those for
he compilation process.

xample. Fig. 1 presents an illustrative example that demonstrates
ow CCAL establishes an abstract layer interface using concrete states
nd implementations. The main goal of this example is to construct an
verlay layer that includes the incr primitive. To start, the example
uilds a incr function, void incr(), based on the CNT variable

located in the memory of the underlay layer. The CNT variable serves
as the key state for the counter, and the void incr() function defines
a transition on this variable. Since the variable is stored in memory, it

Journal of Systems Architecture 147 (2024) 103049J. Kim et al.
Fig. 1. Counter example in CCAL without considering concurrency.
is represented as a list of bytes. In the case of an int64 type, the length
of the list will be 8.

Next, CCAL outlines a systematic approach for converting the void
incr() function into the incr primitive within the overlay. This

process involves several key steps. Firstly, the permission on the CNT
variable in the overlay’s memory is revoked, ensuring that only the
void incr() function can access it. Instead of directly accessing the
CNT variable, the overlay introduces a CNT field with a Z type (repre-
senting an unbounded integer) in Coq. This field represents the value
stored in the CNT variable in the underlay’s memory. At this stage,
both the CNT variable in the underlay’s memory and the CNT field in
the overlay’s abstract state should contain the same value. To estab-
lish this relationship, a refinement relation denoted as 𝑅 is defined,
ensuring the alignment of values between the two layers. Finally, the
figure introduces the incr primitive within the overlay. The primitive
behaves exactly the same as the void incr() function but operates on
different states, specifically the CNT field in the overlay’s abstract state.
By following these processes, a connection is established between the
two layers, enabling coherent behaviors on both layers with all possible
transitions.

It is important to note that while CCAL provides a systematic
methodology for applying this approach to the verification process, it
does not generate definitions or proofs automatically. CCAL is built on
Coq, an interactive theorem prover, and it requires verification engi-
neers to provide appropriate state definitions, primitives, refinement
relations, and proofs to ensure the coherence of the two layers. How-
ever, this methodology can be applied iteratively, making it possible
to decompose large-scale software into multiple layers and introduce
abstract layers in a granular manner.

Events, logs, and concurrent environmental contexts. Verification
frameworks for concurrent programs must consider all possible inter-
leaved behaviors that can occur due to concurrency. Let us consider the
verification of correctness and other properties of a concurrent counter
as an example. In this scenario, it is crucial to account for situations
where other threads can increment the counter an arbitrary number of
times between the two increments performed by the current thread.
Certain properties of concurrent programs, such as prohibiting two
threads from reading the same number from the counter, inherently
rely on these interleavings. To address this requirement, it becomes
necessary to track how each concurrent instance in the system updates
its state. Consequently, the verification framework needs to provide
a mechanism to make all interleavings visible. Merely representing
program states using more abstract and mathematical data structures
instead of low-level states is insufficient. This approach only captures
the value that was most recently updated, discarding all previous state
updates. For example, representing a C struct with multiple integer
4

fields using a mathematical record type with unbounded integer (Z)
fields does not capture the full range of interleavings that can occur
among multiple instances in the concurrent system. Fig. 2(a) shows
a similar example. It abstracts the shared counter state as a single Z
type variable in Coq, but it has a problem of modeling and visualizing
interleavings in Coq definitions and proofs since it directly discards the
history of the update when a new incr is triggered by one instance of
the system.

To tackle this challenge, the CCAL framework leverages the flexi-
bility of abstract states within each layer to model concurrency. Instead
of directly representing shared resource states with memory (𝑚𝑒𝑚) or
a simple abstract type in the layer (e.g., Z type variable in Coq for
an integer counter), CCAL utilizes logical logs as part of its abstract
state to describe the history of interleaved behaviors. Fig. 2(b) shows
how we model a concurrent counter by using events and a log, a
collection of events. Instead of discarding the update history, it records
all previous updates and who triggered those updates. Calculating the
current counter value is also available with this representation by
counting the number of incr events in the log. With this simple
modification, capturing all interleaving details in a concurrent program
becomes possible.

This approach also provides a way to consider all possible behaviors
of other instances when specifying concurrent programs. Concurrent
programs are typically designed with the assumption that each instance
executes the same concurrent program sequentially (e.g., concurrent
counter, spinlock, memory management module, etc.), while multiple
instances can interact with each other at specific points. Therefore,
when specifying such programs, it is natural to construct a program
specification for a concurrent program in a similar manner to that
of a sequential program, but such specifications should also capture
how other instances affect the state that current instances can access
together. To address this, we introduce the notion of a (concurrent)
environmental context, denoted as 𝜀, as shown in Fig. 2(c). The 𝜀 is
a function that takes a CPU ID and the current log of that CPU ID
and returns a log that defines the behavior of other CPUs. Instead of
exposing all details of every instance in the system, the example aims to
define how the system works based on the view of CPU 1 (i.e., what will
be the proper specification in terms of CPU 1.) From this perspective,
CPU 0 increments the value of the counter twice. However, there is a
possibility for other instances (in this case, CPUs) to update the same
counter, as the counter is shared among all concurrent instances in
the system. To model this, an environmental context (𝜀) is queried
with the log that CPU 0 has just before CPU 0 invokes the second
incr. The query then provides one possible scenario in which other
instances may perform their actions, such as two incr calls from CPU

1 in this case. However, even in this case, the possible behavior by

Journal of Systems Architecture 147 (2024) 103049J. Kim et al.
Fig. 2. Events, log, and (concurrent) environmental contexts in CCAL.
CPU 1 is slightly abstracted, as it does not specify exactly when those
two incr calls are invoked, as seen in Fig. 2(a) and (b). The result
from 𝜀 only considers who invokes how many transitions that affect
the shared state. This approach allows for the consideration of various
interleaved behaviors that can arise due to the concurrent nature of
the program. By incorporating the environmental context and querying
it at relevant points in the program, we can capture the influence of
other instances and ensure to build comprehensive specifications of
concurrent programs.

The discussed ideas are well fitted into abstract layer approaches
and thus work as key concepts to handle concurrency in CCAL. In the
abstract state of CCAL, shared resources encompass multiple sub-fields,
representing fine-grained sub-data states associated with concurrent
modules in the system. Examples include queues for communication
channels and thread schedulers in operating systems. Every sub field
for shared resources in the abstract state of CCAL must include at
least one log of events (denoted as 𝑙) and an environmental context
(denoted as 𝜀). These components empower CCAL to handle concurrent
programs without the need to modify underlying libraries and the
compiler, as previously described in the earlier work of CCAL [2]. An
event describes any action that has observable consequences for other
CPUs. For each primitive specification, events must be defined for all
points in the program where it writes to shared resources (excluding
accesses to per-CPU private memory). The log is a list of events that
represents all actions taken by the computer since it began running. To
account for concurrency, actions from different CPUs are interleaved
in the list. Next, an environmental context models other instances of
the concurrent program. During the verification process with CCAL,
the framework is always parameterized with a single instance of the
concurrent program (similar to Fig. 2(c)), typically a single CPU, due
to the underlying machine model LAsm in CompCertX. This necessitates
a way to express the behavior of other components, and this is where
the environmental context (𝜀) comes into play.

Even though events and environmental context provide a powerful
method to handle concurrent programs, they require assumptions about
concurrency interleaving. It is important to select a set of events that
are granular enough to capture all possible scheduling interleavings
that may occur when writing a specification for a CCAL layer. For
instance, events for a simple spinlock layer might include ACQ_LOCK
5

and REL_LOCK, while a layer with only an incr atomic expression
may have an event such as incr. Therefore, it is crucial for verification
engineers to be aware of the interleaving points at the bottom layer
of CCAL proofs, as all verified program modules that use CCAL will
depend on them. For instance, in the verified MCS Lock module in
CertiKOS, memory access operations of the MCS lock data structure
serve as interleaving points. However, this approach limits the rigor
of formal verification using CCAL. It assumes the validity of the in-
terleaving point, as this validity is not established through a formal
connection with the actual x86 machine model which can interleave at
every assembly instruction. Instead, it solely relies on the interleaving
design by the verification engineer.

2.4. CertiKOS on CCAL

CertiKOS [5] is a formally verified operating system that handles
fine-grained shared memory concurrency in the proof. It is imple-
mented in 6500 lines of code, including 6100 lines in C and 400 lines
in Assembly. CCAL is used to demonstrate the full functional cor-
rectness of the system’s operating system specifications. Even though
the number of lines is much smaller than that of typical commercial
programs, verifying this scale and complexity is considered a large-scale
verification with tremendous challenges. It is indeed one of the largest
formal verification projects in the world.

Theorem 1 describes the correctness theorem of CertiKOS. The
theorem is defined under the assumption that [[𝑀]]

LAsm
(

𝐿[𝑐𝑖𝑑,𝜀]
) defines

a program 𝑀 ’s execution on LAsm with a layer 𝐿 that is parameterized
by CPU ID 𝑐𝑖𝑑 and environmental context 𝜀, 𝙼𝚌𝚎𝚛𝚝𝚒𝚔𝚘𝚜 implements a
CertiKOS kernel, 𝙼𝚞𝚜𝚎𝚛 is a user program, 𝐿mboot is the bottom-most
layer of all layered stacks in CertiKOS, and 𝐿syscall is the top-most layer
of all layered stacks in CertiKOS.

Theorem 1 (CertiKOS Correctness With CCAL).

[[𝙼𝚌𝚎𝚛𝚝𝚒𝚔𝚘𝚜 ⊕ 𝙼𝚞𝚜𝚎𝚛]]LAsm
(

𝐿mboot [𝑐𝑖𝑑,𝜀]
) ⊑𝑅𝑐𝑒𝑟𝑡𝑖𝑘𝑜𝑠

[[𝙼𝚞𝚜𝚎𝚛]]LAsm
(

𝐿syscall[𝑐𝑖𝑑,𝜀]
)

However, the theorem makes certain assumptions, as discussed
above. Firstly, the complete theorem is parameterized by a single CPU
(𝑐𝑖𝑑), which implies that it describes the multicore machine model
symbolically. Secondly, the theorem relies on 𝜀, which allows for

Journal of Systems Architecture 147 (2024) 103049J. Kim et al.
Fig. 3. CertiKOS proofs using CCAL and SimplMM.
concurrent program verification on CCAL, but its correctness must
be trusted. Therefore, to strengthen the theorem, we need to address
these issues and provide a reasonable multicore machine model as the
foundation for the proofs that SimplMM can provide.

3. 𝐒𝐢𝐦𝐩𝐥𝐌𝐌 In a nutshell

As discussed, the primary goal of our work is to eliminate the
assumptions in Theorem 1 using an efficient and generic approach.
Fig. 3 illustrates our focused problem using the example of CertiKOS
for simplicity and clarity, although our work is not strictly tied to
any specific verification target. The figure depicts three layers. The
top-level layer represents the syscall layer in the CertiKOS proof
stack with CCAL. This layer specifies the abstract layer of the entire
CertiKOS kernel and can execute user programs. In Theorem 1, this
corresponds to [[𝙼𝚞𝚜𝚎𝚛]]LAsm

(

𝐿syscall[𝑐𝑖𝑑,𝜀]
). The middle level represents

the bottom level of the CertiKOS proof stack with CCAL, which ex-
ecutes both the CertiKOS implementation and user programs together.
In Theorem 1, this corresponds to [[𝙼𝚌𝚎𝚛𝚝𝚒𝚔𝚘𝚜 ⊕ 𝙼𝚞𝚜𝚎𝚛]]LAsm

(

𝐿mboot [𝑐𝑖𝑑,𝜀]
).

CCAL provides contextual refinements between these two layers by
introducing multiple layers, refinement relations, and proofs. This is
represented by (a) in the figure and aligns precisely with Theorem 1.

However, there are a few assumptions in the approach that need
to be addressed. The layers between the top-level and bottom-level
layers are all parameterized by a single CPU, which is a limitation of
CCAL. These layers also rely on environmental contexts, as depicted in
the figure and described in the theorem. However, the validity of the
environmental contexts is not justified. Environmental contexts supply
actions that directly alter the system’s state. However, the method by
which these actions are derived from the concrete evaluation of multi-
ple instances within the system remains unclear. Also, the interleaving
points at the bottom-level LAsm layer are not justified, even though
they can be reviewed and designed by the verification engineers of
CertiKOS. To tackle these issues, our work aims to address them by
the following two methods. First, we introduce a multicore machine
model that enables the execution of CertiKOS implementation and
user programs together. This multicore machine model removes the
assumptions about interleaving points by allowing interleavings at each
assembly instruction. Second, we provide refinement proofs between
our defined multicore machine model and the bottom-level LAsm layer.
This ensures that the two machine models (layers) are aligned. Unlike
the layers in CCAL, the multicore machine model does not require
6

environmental contexts that transition specifications in CCAL layers
rely on. Instead of specifying concurrent programs associated with a
specific instance (as shown in Fig. 2(c)), the model specifies how each
transition affects all states in the system, including per CPU and shared
states. In this sense, it eliminates the need for environmental contexts
in the same way as the layers in CCAL. The multicore machine model
serves as a source for building environmental contexts for all layers in
the proof stack.

Clearly, SimplMM needs to address various challenges, including
parameterizing the machine model with a single CPU and constructing
environmental contexts. Designing these components specifically for
each software verification task and building detailed proofs for each
case would be impractical. To tackle this, we employ two key ideas:
breaking down the problem into multiple subproblems and providing a
generic template that can be applied to any software formal verification
utilizing CCAL. Fig. 4 provides more detailed information about these
ideas.

To simplify the formal semantics and proofs in SimplMM, we ini-
tially make several assumptions regarding the underlying machines and
the software being verified. First, we assume a fixed number of CPUs, a
fixed initial state for all CPUs, and fairness among CPUs. These assump-
tions are reasonable for general-purpose multicore machine models
like multicore x86. Second, we assume that there are no dynamic
allocations in the verified software. While this assumption may not
be appropriate for all software, it greatly simplifies the verification
process in SimplMM and is consistent with the limitations of CCAL
regarding resource allocation. Therefore, it is important to note that
these assumptions do not restrict the scope of programs that can be ver-
ified using CCAL when users aim to extend the proof using SimplMM.
Reducing these assumptions is a potential avenue for future work in
both CCAL and SimplMM. Additionally, we assume that memory access
follows sequential consistency ordering.

With the discussed assumptions, Fig. 4 provides an overview of how
SimplMM is designed and how it can be connected with the bottom-
level CCAL layer for a specific software verification task. In the figure,
all the elements within the SimplMM box represent generic framework
components that are not specific to any particular target software being
verified. This means that the definitions and proofs inside the box can
be reused for multiple verification targets. On the other hand, the red
arrows and lines represent target-specific components that need to be
instantiated and proven in order to establish the connection between
SimplMM and a specific software verification task using CCAL.

Journal of Systems Architecture 147 (2024) 103049J. Kim et al.
Fig. 4. SimplMM overview.
As discussed, SimplMM addresses two distinct challenges separately:
(1) simplifying the multicore machine model to a single-core ma-
chine model while abstracting away the detailed machine information,
such as state and transition definitions, of the x86 machine model,
and (2) providing a generic framework that can be connected with
any CCAL layers involved in different verification targets. To tackle
these challenges, we begin by defining abstract states and instructions
(Fig. 4(a)) that can be shared across multiple machine models in
SimplMM, including the multicore and intermediate machine models.
This approach not only adds generality to SimplMM but also reduces
the complexity associated with multiple machine models. While the dif-
ferent machine models in SimplMM have varying levels of granularity,
parameterized by different concurrent instances and having different
interleaving points, the evaluation rules for each transition (i.e., hard-
ware instructions performed in each instance) are quite similar. By
defining abstract yet generic definitions for these common components,
we can effectively reduce the size of machine definitions. Next, we
gradually introduce appropriate environmental contexts for each inter-
mediate machine model and establish two key proofs: refinement proofs
between the machine models and the validation of the proper context
for each model (as depicted in Fig. 4(b)). These proofs ensure that the
machine models in SimplMM are refined versions of each other and
that the environmental contexts are correctly defined and utilized in
the verification process.

This approach leads to the development of a single-core machine
model and a concurrent context, which can be connected with the
machine model of CCAL, specifically, LAsm parameterized with a
layer definition. However, additional work is required to establish the
connection between LAsm parameterized by a layer and the models in-
troduced in SimplMM. This is because the introduced models and proofs
in SimplMM still rely on abstract definitions that need to be instantiated
with specific machine details. To achieve this, we begin by instantiating
the abstract definitions with machine details from a specific layer
that will be combined with SimplMM. In the case of the CertiKOS
proof, this would be LAsm

(

𝐿mboot [𝑐𝑖𝑑, 𝜀]
)

. This instantiation allows us
to incorporate the specific details of the layer into the framework,
as depicted in Fig. 4(c). Finally, we establish a one-step connection
by providing a refinement proof between the top-level intermediate
machine model in SimplMM and LAsm parameterized by a layer, which
is depicted in Fig. 4(d). The bottom-level layer of LAsm is entirely
determined by verification engineers. One straightforward example is a
7

layer containing atomic instructions for shared objects, expanding the
LAsm model to accommodate concurrent behaviors. This proof ensures
that the machine models in SimplMM and CCAL are consistent and that
the connection between them is valid. The similar idea has been briefly
described in previous works [2,5]. However, concrete formal semantics
and proofs were not provided as SimplMM has done. Also, it is well-
known that there is always a significant gap between a high-level idea
and its real formal semantics due to several details that a high-level idea
may overlook. We explain the key concepts of each step from Section 4
to Section 7 to provide a better understanding of the process.

4. Multicore machine

In SimplMM, machine models are defined in a modular way by de-
composing the necessary components into multiple levels, including the
instruction-level, per CPU level, and global machine level. This modular
approach enables the sharing and reuse of components across different
machine models, leading to more concise proofs. This section begins by
introducing a formal definition of abstract states and instruction-level
transitions in SimplMM. These abstractions are crucial for representing
system states and transitions without delving into the specific details
of hardware platforms like x86 or ARM, as discussed in Section 3.
By using these abstract definitions, concise proofs can be achieved
across multiple formal languages within SimplMM. Next, the section
explains the semantics of each CPU by utilizing the abstract states and
instruction-level semantics. This allows for a detailed understanding
of the behavior of individual CPUs in the system. Finally, the section
presents the multicore machine model, which serves as the founda-
tional level of SimplMM based on the abstract definitions introduced
earlier. This machine model provides a comprehensive framework for
reasoning about the behavior of concurrent systems and enables the
verification of complex properties.

4.1. Abstract hardware state and transition rules

The key components of the abstracted hardware states and oper-
ations in SimplMM are depicted in Fig. 5(a). The model consists of
two types of states: private states (𝜌𝑚𝑐) and shared states (𝜍𝑚𝑐 and
e𝚊𝚝𝚘𝚖) which can be instantiated with any types in Coq (⊤𝚃𝚈𝙿𝙴 rep-
resents the top type in Coq). Private states represent resources that
are only accessible by each individual CPU, such as general-purpose

Journal of Systems Architecture 147 (2024) 103049J. Kim et al.

m
t
t
t
t
t
b
t
p

(

Fig. 5. Abstract state and transitions.
registers and memory locations that are not shared with other CPUs.
In contrast, shared states are accessible by all CPUs. Shared states are
further divided into two sub-states based on the atomicity of operations
performed on them. The first shared state (𝜍𝑚𝑐) allows non-atomic
operations, which means that it allows for the possibility of data race
conditions on the state. It is typically the responsibility of programmers
to prevent such conditions by implementing protection mechanisms,
like spinlocks. The second shared state represents a state that allows
only atomic access, such as the CAS instruction, an instruction used
in multithreading to achieve synchronization by atomically performing
compare-and-swap. This state is indirectly modeled using atomic events
(e𝚊𝚝𝚘𝚖), which correspond to the atomic assembly instructions sup-
ported by the system. The way to represent resources related to atomic
operations follows the concurrent representation concept of CCAL,
using events and logs described in Section 2. By doing that, SimplMM
and CCAL share common representations for atomic operations that
are associated with concurrency interleaving, and providing formal
connections between SimplMM and CCAL becomes easy thanks to their
similarity.

SimplMM introduces four commands to model operations on the
state, consisting of two abstract commands and two logical commands.
The abstract commands combine multiple concrete instructions into a
single command, while the logical commands capture the logical trans-
fer of ownership of shared memory locations by the system, such as
memory regions for thread control blocks in an operating system. The
use of only two abstract instructions by grouping multiple instructions
significantly simplifies proofs within SimplMM. In contrast, when all

achine models in SimplMM explicitly utilize machine-specific instruc-
ions, refinement proofs between multiple machine models would have
o account for numerous cases and heavily rely on specific hardware de-
ails. However, our approach reduces the size of refinement proofs due
o the succinct design of the language achieved through abstract defini-
ions. Furthermore, we can provide a machine-independent framework
y abstracting away machine-specific details, except in cases where
hey are genuinely necessary. Additional details about this issue are
rovided in Section 7.

The first two commands in SimplMM are the private command
𝙿𝚁𝙸𝚅𝙰𝚃𝙴) and the atomic command (𝙰𝚃𝙾𝙼𝙸𝙲). The private command

represents most instructions in x86 hardware, where their behaviors
are localized to a single CPU. Examples of private commands include
arithmetic instructions and memory load/store instructions. Arithmetic
instructions, by their nature, only affect the CPU executing them.
However, the effects of memory access depend on the specific mem-
ory region being read from or written to. Accessing private memory
with private commands is considered safe. However, accessing shared
8

memory locations with a private command requires the accessing CPU
to own the memory location to avoid data race conditions. This can
lead to unsafe situations, but it is a possible behavior in x86 and other
multicore machine models when the memory region is not suitably
protected. Similar to x86 and other hardware, our model differentiates
between memory access and ownership. Again, it is the responsibility
of programmers to develop data race-free programs. On the other
hand, atomic commands are mapped to special instructions that guar-
antee atomicity in state updates, both in registers and memories. An
example of an atomic command is the xchg instruction, which is a
x86 instruction that atomically exchanges a register/memory with a
register. The remaining two commands are logical commands that
represent ownership of shared states. These commands play a crucial
role in defining data race conditions in shared memory locations and
connecting SimplMM to LAsm, the hardware model of CompCertX.
The atomic, acquire, and release commands also include additional
information such as the 𝑖𝑑𝑟𝑠𝑐 and 𝑛𝑎𝑚𝑒𝑝𝑟𝑖𝑚. The 𝑖𝑑𝑟𝑠𝑐 number is a
fixed logical identifier assigned to each shared resource (e.g., page
table, IPC channels in operating systems). In hardware models for
software with dynamic allocation, assigning these identifiers to shared
resources can be complex. However, the simplified memory allocation
in CCAL and CertiKOS [5] reduces complexity in SimplMM by elimi-
nating the need for dynamic allocation. While this limitation exists in
SimplMM, it greatly simplifies the use of shared states in the model.
The 𝑛𝑎𝑚𝑒𝑝𝑟𝑖𝑚 string represents the primitive name to distinguish each
atomic primitive from others.

When defining a multicore machine model, it is crucial to in-
corporate logical events that go beyond real hardware instructions.
These logical events are necessary to capture the interleavings among
multiple CPUs and make them visible, thus playing a significant role in
representing the system’s behavior as a whole. To fulfill this purpose,
the logical history (𝒍𝒐𝒈mc) is introduced as a shared record among all
CPUs. It not only includes the updates on atomic states but also captures
the logical events that influence the states and control across multiple
CPUs. Among the different events generated, two are dedicated to mod-
eling the interleaving between multiple cores and a logical component
in our system, logical system scheduler. A logical system scheduler is a
conceptual framework designed to represent the non-deterministic in-
terleaving decisions within a log. The yield event (𝙴𝚈𝙸𝙴𝙻𝙳) occurs when
one core (𝑓𝑟𝑜𝑚) relinquishes control to the logical system scheduler,
allowing the system to transfer control to another core. Conversely, the
yield-back event (𝙴𝙱𝙰𝙲𝙺) is generated by the logical scheduler when a
core (𝑡𝑜) gains control of execution. The remaining three events track
shared memory accesses and are parameterized by the executor (core -
𝑓𝑟𝑜𝑚), the logical identifier of the shared state being accessed (common
to all event types), the result of non-atomic updates (𝑑) for 𝙴𝚁𝙴𝙻,

and the executed atomic operation (𝑒) for e𝚊𝚝𝚘𝚖. These events provide

Journal of Systems Architecture 147 (2024) 103049J. Kim et al.

e
m

T
t

d
o
o
r
e
w

t
b
t
r
r
a
e
a
𝙴

p
v
f
S

t
t
e
C

v
c
e
e
i
t
t
t
s
s
d
t
t
s

Fig. 6. Local view (state) and local step rules.
(
t
i
g
t
p
o
𝑙
m
e
e

ssential information for monitoring and coordinating access to shared
emory in the system.

The semantic signature of each operation is presented in Fig. 5(b).
hese operations return P, which represents the return type of proposi-
ional logic — a statement that can be either true or false — in Coq. In

order to align with the way that LAsm, the assembly model of CCAL,
efines semantics for its instructions, we use propositional logic instead
f Coq functions for these operations. It is important to note that these
perations do not have concrete definitions in SimplMM for the same
eason why SimplMM uses abstract commands. They are concretized to
stablish the connection between SimplMM and layers in CCAL, and
ill be further discussed in Section 7.

The program counter (PC) is a special mechanism that retrieves
he current private state of a core and determines the command to
e evaluated next. The private command transition rule (𝙴𝚟𝚊𝚕𝚙𝚛𝚒𝚟𝚊𝚝𝚎)
akes the current CPU ID and private state as input and produces the
esulting private state after evaluation. The atomic command transition
ule (𝙴𝚟𝚊𝚕𝚊𝚝𝚘𝚖) relies on the current CPU ID, resource ID, private state,
nd logical history. It returns the updated private state and the atomic
vent that results from the evaluation. The get and set rules (𝙴𝚟𝚊𝚕𝚐𝚎𝚝
nd 𝙴𝚟𝚊𝚕𝚜𝚎𝚝) define the transitions for 𝙴𝙰𝙲𝚀 and 𝙴𝚁𝙴𝙻, respectively.
𝚟𝚊𝚕𝚐𝚎𝚝 takes the private and shared states as input and returns the
rivate state, reflecting the snapshot of the shared resources. Con-
ersely, 𝙴𝚟𝚊𝚕𝚜𝚎𝚝 defines the reverse transition rule. These rules form the
oundation for the transition rules in various machine models within
implMM, as explained in the subsequent sections.

Fig. 6 illustrates how transitions in each core are defined using
he instruction-level semantic rules presented in Fig. 5(b). Specifically,
he figure describes how these instruction-level semantic rules are
mployed to define the local step rules (𝙻𝙼𝚊𝚌𝚑) based on the abstract
PU-local state (𝚟𝚒𝚎𝚠𝚕), also known as the local view.

As illustrated in Fig. 6, local step rules are ternary relations in-
olving one CPU ID and two local views (𝚟𝚒𝚎𝚠𝚕). Local views play
rucial roles in the semantics, and two local views associated with
ach rule have different meanings and purposes. The first local view of
ach local step rule represents the initial state from which the current
nstruction performs its transition. It includes the initial private state of
he CPU and the shared log that represents the initial shared state. On
he other hand, the second local view in each semantic rule represents
he result of the evaluation that needs to be updated in the global
tate defined by the global machine semantic rules. Since the initial
hared log is already known in the global machine semantic rules, it
oes not need to be included in the left-hand side local view. Instead,
he right-hand side local view contains the final private state and
he log (or event) that will be added to the shared log in the global
tate as defined by the global semantic rules, while the notation 𝑙 ∙ 𝑒

represents the concatenation of the event 𝑒 into the list 𝑙. By carefully
defining and utilizing the local view, the transitions within each core
can be effectively captured, allowing for the composition of these local
transitions to form the global behavior of the multicore system.
9

The local step rules take the local view (𝙻𝚅𝚒𝚎𝚠 𝑝𝑠 𝑙) as input, which
represents the pre-state of the evaluation for the corresponding CPU.
These rules return an updated private state and the log that is generated
during the evaluation, which also needs to be updated in the shared
state that is visible to other CPUs. For example, when the current
program counter indicates a private instruction, the semantic rule
(PRIVATE rule) only updates the private state of the CPU without
generating any logs during the evaluation. On the other hand, when
evaluating an atomic instruction, the machine updates the private
state and generates an event that corresponds to the atomic command
(ATOMIC rule). The acquire and release operations (ACQ_RULE and
REL_RULE rules) make use of an auxiliary function (𝙲𝚊𝚕𝙾𝚠𝚗𝚎𝚛) to
determine if the resource can be acquired or released and to find the
appropriate snapshot, which reflects the state achieved by replaying
all events in the log of the shared state that needs to be updated in
the private state. However, it is crucial to emphasize that these rules
alone do not guarantee the absence of data races in the log. To ensure
data race freedom, additional program verification mechanisms, such
as the use of spinlocks [23], need to be employed. These mechanisms
help discharge the obligations for data race freedom and enhance the
overall correctness and reliability of the system.

By utilizing the local step rules, the transitions within each core can
be properly handled, ensuring the consistency of the private and shared
states. However, further verification is necessary to establish data race
freedom and other desired properties in the system.

4.2. Multicore machine syntax and semantics

With the rules defined in Section 4.1, modeling a multicore ma-
chine is straightforward, and it is described in Fig. 7. The multi-
core machine model operates by making non-deterministic selections
for the next CPU to perform evaluations based on the global state
(𝚑𝚜𝚝𝚊𝚝𝚎), which consists of the current CPU ID (𝑐𝑢𝑟𝑖𝑑), a set of private
states for each CPU (𝑙𝑠𝑝), and a shared log (𝑙𝑜𝑔). The process of non-
deterministic evaluations involves recording two scheduling events that
represent transferring the current control from 𝑐𝑢𝑟𝑖𝑑 to 𝑐𝑢𝑟𝑖𝑑′. The
multicore machine model then retrieves the private state of 𝑐𝑢𝑟𝑖𝑑′

𝚐𝚎𝚝𝙿𝚂𝚃(𝑙𝑠𝑝, 𝑐𝑢𝑟𝑖𝑑′) = 𝚂𝚘𝚖𝚎 𝑝𝑠) from the set of private states, performs
he evaluation using the local transition rules defined in Fig. 6. Finally,
t updates the result, which are the updated private state and the
enerated log, in the global state (𝚜𝚎𝚝𝙿𝚂𝚃(𝑐𝑢𝑟𝑖𝑑′, 𝑝𝑠′, 𝑙𝑠𝑝) = 𝑙𝑠𝑝′). In
his rule, 𝑙𝑠𝑝′ represents the updated private state, which changes the
rivate state of the evaluated CPU while leaving the private states
f other CPUs unchanged. The updated shared log is represented by
′++ 𝑙′′, which concatenates 𝑙′′ and 𝑙′. Overall, the multicore machine
odel allows for interleaving of CPUs in each evaluation step without

xposing detailed states and instructions. It provides a concise and
ffective way to model the behavior of a multicore machine.

Journal of Systems Architecture 147 (2024) 103049J. Kim et al.
Fig. 7. Multicore machine syntax and semantics.
Fig. 8. Environment machine model syntax and semantics.
m
a
c
T
𝑙
m
p
m

t
t
a
s
t
i
t
r
e
t

5. Introduce CPU local machine model

The connection between the multicore machine model of SimplMM
in Section 4 and a particular layer of CCAL is challenging due to the
significant gap between the two models. There are three main issues
that need to be addressed: (1) defining a transition rule that focuses
on a single-core while abstracting away the others and establishing a
formal connection between them, since layers of CCAL are parameter-
ized by a single-core. (2) eliminating execution control events that are
not present in the machine model of CCAL. (3) mapping each abstract
command and transition to its concrete definition of a certain layer
of CCAL that users hope to be connected with SimplMM. This section
addresses the first two challenges, while the third challenge is tackled
in Section 7.

5.1. Environmental machine model

Introducing a single-core machine with a proper environment con-
text, the method to simplify interleavings and to hide non-determinism,
requires two components: (1) masking the non-determinism of multi-
core hardware, and (2) building an environment context that tracks the
evaluation history of shared resources by other CPUs. The intermediate
machine model, an environment machine model, shown in Fig. 8 han-
dles these two challenges. This model is parameterized by two factors:
the current available CPU set (𝐴 when 𝐴 ⊆ S𝑐𝑜𝑟𝑒) and the environment
context for the set (𝜀𝐴). The state definition (𝚎𝚜𝚝𝚊𝚝𝚎) is similar to
that of a multicore machine model, but with an additional field, 𝑐𝑝,
to differentiate between states that are eligible for local evaluation and
those that are eligible for scheduling.

In comparison to the multicore machine model depicted in Fig. 7,
the environmental machine model distinguishes between local evalua-
tions (PROGRESS) and scheduling evaluations (YIELD). This distinc-
tion is achieved by introducing a boolean value in the environmental
machine model. The 𝚌𝚘𝚒𝚗𝚙 definition is used to identify this boolean
10
value for each CPU, and the functions 𝚐𝚎𝚝𝙲𝚘𝚒𝚗𝙿 and 𝚜𝚎𝚝𝙲𝚘𝚒𝚗𝙿 are em-
ployed to update these values in the machine’s state. During a schedul-
ing evaluation, the model first records that the current CPU has trig-
gered the scheduling (𝑙0 = 𝑙 ∙ 𝙴𝚈𝙸𝙴𝙻𝙳⟨𝑐𝑢𝑟𝑖𝑑⟩). Next, it uses the environ-

ent context (𝜀𝐴), which defines a single scheduling sequence among
ll possible sequences, to determine the next CPU to be scheduled by
alling the context query function (oget(𝑙0, 𝜀𝐴) = 𝚂𝚘𝚖𝚎 𝙴𝙱𝙰𝙲𝙺⟨𝑐𝑢𝑟𝑖𝑑′⟩).
he model then records the next scheduled CPU ID in the log (𝑙′ =
0 ∙ 𝙴𝙱𝙰𝙲𝙺⟨𝑐𝑢𝑟𝑖𝑑′⟩). This deterministic scheduling sequence makes the
achine model deterministic, effectively hiding the non-determinism
resent in multicore machine model. The relationship between the two
odels is discussed in Section 6.

Since 𝐴 is a subset of S𝑐𝑜𝑟𝑒 (the full set of CPUs in the system),
some CPUs that are in S𝑐𝑜𝑟𝑒 may not be in 𝐴. The third rule (SKIP) is
applied to these CPUs that are not in 𝐴 but are in S𝑐𝑜𝑟𝑒. In this case, the
rule queries the environment context (oget(𝑙, 𝜀𝐴) = 𝚂𝚘𝚖𝚎 𝑒) and adds
he result event of the query (𝑙′ = 𝑙 ∙ 𝑒) to the log. This result represents
he abstracted behaviors on shared resources by those CPUs (CPUs that
re not in 𝐴). It is important to note that there may be multiple private
tep rules for CPUs that are not in 𝐴. These private steps do not affect
he observable behaviors of other CPUs, so the rule does not take them
nto account during the environmental context query. It is important
o note that the current available set (𝐴) is a parameter of the step
ule. If the set 𝐴 is the full set of CPUs (𝐴 = S𝑐𝑜𝑟𝑒), then this rule is
quivalent to the rule in the multicore semantics, except that it hides
he non-determinism caused by the multicore environment. If the set 𝐴

is a single CPU (𝐴 = 𝑐 for some 𝑐 ∈ S𝑐𝑜𝑟𝑒), then it becomes a single-core
machine model with an environment context for the rule.

5.2. CPU-local machine model and optimizations

The rules in Fig. 8 with a singleton available CPU set can already be
considered a machine model with only a single-core. The environment
machine model addresses the key challenges of hiding non-determinism
and establishing a environment context. However, the rules still differ
from transitions in a layer of CCAL in terms of state definition and

Journal of Systems Architecture 147 (2024) 103049J. Kim et al.

e
f
d
o
c
a
q
S

m
s

c

T
m
s

a
T
t
t

Fig. 9. Single-core machine model syntax and semantics.
nvironment context query. To simplify the model and ease the proofs
or connections, we introduced multiple single core machine models by
efining a state focused on a single-core and reducing the complexity
f recorded logs in our machine model. Fig. 9 shows the first simplifi-
ation, which reduces the state definition (𝚜𝚝𝚊𝚝𝚎𝚜𝚒) to only allow for
single-core and its associated state. As described, the log and context
uery have also been simplified, for example, by merging multiple
KIP steps into a single big step style oget function, and eliminating

unnecessary yield and yield back events. Finally, the yield and yield
back events will be merged with the other three events, since changes
in execution control at those positions do not affect the state changes
caused by arbitrary interleaving.

6. Refinement proofs

SimplMM establishes formal connections between machine models
and their concurrent environment contexts by proving two properties.
Firstly, we prove that the environment contexts utilized in environmen-
tal and single-core machine models can always be obtained from eval-
uations of multicore and environmental machine models, respectively.
This demonstrates that the interleaving hiding with environmental con-
texts in these machines encompass all necessary interleaving behaviors
that can occur in lower-level machines. Secondly, we demonstrate re-
finements between different machines when appropriate environmental
contexts are present, thus confirming that their observable behaviors
are equivalent. These two properties can be combined into a single
theorem when focusing solely on showing refinement proofs between
machine models in SimplMM. However, our primary goal is to provide
a multicore machine model that can be linked with layers in CCAL. As a
result, our proofs must be crafted to align with the standard simulation
library in CompCert. Therefore, two key properties in SimplMM are
stated separately. Then, the existence of environmental contexts is
verified internally within SimplMM, and refinements between multiple

odels with the given environmental contexts are verified using the
tandard simulation library in CompCert. Similar to the previous sec-

tion, all refinement relations and proofs are mechanized using Coq and
an be accessed online [24,25].1

heorem 2 (Existence of a Scheduling Oracle). Assuming a multicore
achine evaluation, 𝙼𝚊𝚌𝚑𝚖𝚌∗ ℎ𝑠𝑡 ℎ𝑠𝑡′. Then, there always exists the corre-
ponding consistent environmental machine model steps and the constructed

1 Theorems in mechanized versions, indicated with footnotes, often include
dditional properties and details that are not explicitly stated in this section.
he theorems presented here focus on the key aspects for a simpler presenta-
ion, rather than listing all the details found in the corresponding mechanized
heorems.
11
environmental context, 𝜀S𝑐𝑜𝑟𝑒 , with the simulation proofs. Also, the con-
structed environmental context has the same behavior with the generated
log 𝑙′ during the evaluation, when 𝑙′ is the log in the state ℎ𝑠𝑡′.2

Theorem 2 establishes the existence of 𝜀S𝑐𝑜𝑟𝑒 that are required in en-
vironmental evaluation steps, denoted by 𝙼𝚊𝚌𝚑𝚎𝚗𝚟

∗
[S𝑐𝑜𝑟𝑒]

𝜀S𝑐𝑜𝑟𝑒 𝑒𝑠𝑡 𝑒𝑠𝑡′. In
this context, 𝙼𝚊𝚌𝚑𝚎𝚗𝚟∗[S𝑐𝑜𝑟𝑒] 𝜀S𝑐𝑜𝑟𝑒 𝑒𝑠𝑡 𝑒𝑠𝑡′ represents a valid environmen-
tal machine model evaluation that is consistent with 𝙼𝚊𝚌𝚑𝚖𝚌

∗ ℎ𝑠𝑡 ℎ𝑠𝑡′.
This theorem is a crucial element in eliminating non-determinism in
our proofs. The theorem establishes that it is possible to represent inter-
leavings as a deterministic function by providing events associated with
a single execution for any of the possible executions in the multicore
machine model. This technique is also applied in other parts of the sys-
tem where new environmental contexts are introduced, such as when
creating an environmental machine model with a subset of S𝑐𝑜𝑟𝑒. The
proof of Theorem 2 is simple and relies on induction on the evaluation
of the multicore machine. To construct 𝜀S𝑐𝑜𝑟𝑒 , it records the current log
as input and outputs scheduling-related events (𝙴𝚈𝙸𝙴𝙻𝙳, 𝙴𝙱𝙰𝙲𝙺). This
is achieved by recording the log before the evaluation in Fig. 6 (𝑙′ in
the rule) as input and the scheduling-related events (𝙴𝚈𝙸𝙴𝙻𝙳⟨𝑐𝑢𝑟𝑖𝑑⟩ and
𝙴𝙱𝙰𝙲𝙺⟨𝑐𝑢𝑟𝑖𝑑′⟩) as output.

Theorem 3 (Env. Step Refines Multicore Step). Given a multicore machine
evaluation (𝙼𝚊𝚌𝚑𝚖𝚌∗ ℎ𝑠𝑡 ℎ𝑠𝑡′), a set of all CPUs in the system (S𝑐𝑜𝑟𝑒),
a valid environment context (𝜀S𝑐𝑜𝑟𝑒), and an environmental state (𝑒𝑠𝑡)
related to ℎ𝑠𝑡 with a refinement relation (𝑚𝑎𝑡𝑐ℎ_𝑠𝑡𝑎𝑡𝑒 ℎ𝑠𝑡 𝑒𝑠𝑡). There
always exists a valid updated environmental state (𝑒𝑠𝑡′) and environ-
mental transition (𝙼𝚊𝚌𝚑𝚎𝚗𝚟∗[S𝑐𝑜𝑟𝑒] 𝜀S𝑐𝑜𝑟𝑒 𝑒𝑠𝑡 𝑒𝑠𝑡′) that satisfy the relationship
(𝑚𝑎𝑡𝑐ℎ_𝑠𝑡𝑎𝑡𝑒 ℎ𝑠𝑡′ 𝑒𝑠𝑡′).3

Theorem 3 demonstrates the existence of a related environmental
machine model evaluation with the core set (S𝑐𝑜𝑟𝑒) for a given multicore
machine evaluation, using the refinement relation 𝑚𝑎𝑡𝑐ℎ_𝑠𝑡𝑎𝑡𝑒. The
precise definition of the refinement relation 𝑚𝑎𝑡𝑐ℎ_𝑠𝑡𝑎𝑡𝑒 may involve
several sub-equations, which can appear tedious. However, at its core,
the relation is based on the equality between corresponding subparts
of the two machines. For example, consider the case where ℎ𝑠𝑡 =
𝙷𝚂𝚝𝚊𝚝𝚎 𝑐𝑢𝑟𝑖𝑑𝑚𝑐 𝑙𝑠𝑝𝑚𝑐 𝑙𝑚𝑐 and 𝑒𝑠𝑡 = 𝙴𝚂𝚝𝚊𝚝𝚎[S𝑐𝑜𝑟𝑒] 𝑐𝑢𝑟𝑖𝑑𝑒 𝑙𝑠𝑝𝑒 𝑐𝑝𝑒 𝑙𝑒. In
this scenario, the refinement relation 𝑚𝑎𝑡𝑐ℎ_𝑠𝑡𝑎𝑡𝑒 ℎ𝑠𝑡 𝑒𝑠𝑡 checks the
equality of the following three subcomponents: (1) 𝑐𝑢𝑟𝑖𝑑𝑚𝑐 and 𝑐𝑢𝑟𝑖𝑑𝑒,
(2) 𝑙𝑠𝑝𝑚𝑐 and 𝑙𝑠𝑝𝑒, and (3) 𝑙𝑚𝑐 and 𝑙𝑒. Moreover, the relation includes
additional checks to ensure the validity of other parts, such as 𝑐𝑝𝑒. It is
worth noting that similar refinement relations exist for other refinement
proofs, although we have omitted them here to avoid excessive detail.

2 ‘‘Lemma one_step_oracle_refines_hardware’’ in [25], where
the validity of the oracle is defined with ‘‘valid_oracle’’ in the
‘‘hardware_prop’’ definition.

3 ‘‘Lemma one_step_hw_refines_oracle’’ in [24].

Journal of Systems Architecture 147 (2024) 103049J. Kim et al.

e
o
i
‘

c
a

w

o

i
(
a
𝑒
t
t
(

a
T
e
s
e
b
s

c
T
b
r
i
t
C
d
e
t

To connect different machine models, we use a refinement proof
library in the CompCert style [26] as discussed earlier. The main
purpose of the refinement proofs using the library is to prove the
completeness of behavior preservation between a program running on
top of a multicore machine model and the same program running on
an environmental machine model with a full core set (S𝑐𝑜𝑟𝑒) using an
‘‘upward’’ (‘‘backward’’ with the term in CompCert) simulation defined
in the CompCert small step library [21]. The ‘‘upward’’ simulation
allows any behavior of a lower-level machine to be allowed by a
higher-level machine. However, ‘‘upward’’ simulations are generally
harder to establish than ‘‘downward’’ (i.e., ‘‘forward’’ with the term
in CompCert) simulations because lower level machines tend to have
more intermediate and/or concrete states than higher level machines
as well as require more sub lemmas that are sometimes hard to prove
(e.g., the existence of valid transition when any state is provided as an
initial state).4 In this sense, CompCert provides a template to convert
a ‘‘downward’’ simulation into an ‘‘upward’’ simulation to reduce the
proof’s complexity when machine models satisfy certain conditions,
such as determinism and receptiveness of two machine models.5 How-
ever, we cannot use this template to prove Theorem 3 due to the
non-determinism of a multicore machine model in SimplMM. There-
fore, we prove the theorem directly by using an ‘‘upward’’ simulation.
In contrast, other simulation proofs in SimplMM use a ‘‘downward’’
simulation.

Theorem 4 (Existence of an Env. Oracle). Assuming an environmental
machine evaluation (𝙼𝚊𝚌𝚑𝚎𝚗𝚟∗[𝐴] 𝜀𝐴 𝑒𝑠𝑡𝐴 𝑒𝑠𝑡′𝐴), where 𝐵 ⊆ 𝐴 and 𝐴,𝐵 ⊆
S𝑐𝑜𝑟𝑒. Then, there always exist the corresponding consistent environmental
machine model steps associated with a core set 𝐵 and the constructed
environmental context, 𝜀𝐵 , with the simulation proofs. Also, the constructed
environmental context exhibits the same behavior as the generated log during
the evaluation with the core set 𝐴.6

Theorem 4 demonstrates the ability to create an environmental
context by capturing behaviors that affect shared states and are trig-
gered by other CPUs in our multicore system (𝙼𝚊𝚌𝚑𝚎𝚗𝚟∗[𝐵] 𝜀𝐵 𝑒𝑠𝑡𝐵 𝑒𝑠𝑡′𝐵).
When 𝐵 consists of only one core (𝐵 = 𝑐𝑖𝑑), the theorem confirms the
possibility of constructing an environmental context specifically for that
core. The proof of Theorem 4 is similar to that of Theorem 2, with the
additional requirement of constructing the environmental context for
both scheduling events and atomic operation events.

Theorem 5 (Env. Refines Env. with More Cores). Assuming there are
sets of cores, 𝐴 and 𝐵 (that satisfy 𝐵 ⊆ 𝐴 and 𝐴,𝐵 ⊆ S𝑐𝑜𝑟𝑒), an
evaluation of the environmental machine (𝙼𝚊𝚌𝚑𝚎𝚗𝚟∗[𝐴] 𝜀𝐴 𝑒𝑠𝑡𝐴 𝑒𝑠𝑡′𝐴) per-
formed within a valid environment context (𝜀𝐵), and an environmental
state (𝑒𝑠𝑡𝐵) that is connected to the initial state of the evaluation (𝑒𝑠𝑡𝐴)
with the refinement relation (𝑚𝑎𝑡𝑐ℎ_𝑒𝑒𝑠𝑡𝑎𝑡𝑒 𝑒𝑠𝑡𝐴 𝑒𝑠𝑡𝐵). Then, it can be
ensured that a valid updated environmental state (𝑒𝑠𝑡′𝐵) always exists such
that the transition 𝙼𝚊𝚌𝚑𝚎𝚗𝚟

∗
[𝐵] 𝜀𝐵 𝑒𝑠𝑡𝐵 𝑒𝑠𝑡′𝐵 is satisfied and the relationship

(𝑚𝑎𝑡𝑐ℎ_𝑒𝑒𝑠𝑡𝑎𝑡𝑒 𝑒𝑠𝑡′𝐴 𝑒𝑠𝑡′𝐵) remains true.
7

Theorem 5 establishes the refinement relationship between two
nvironmental machine evaluations that correspond to different sets
f cores. Similar to Theorem 3, we utilize the simulation proof library
n CompCert to prove this theorem, but with a template that flips a
‘downward’’ simulation into an ‘‘upward’’ simulation.

To demonstrate the ‘‘downward’’ simulation between the two ma-
hine models, we need to show that given an evaluation step with
larger set of cores (𝐴), there always exists an evaluation step with

4 ‘‘Record bsim_properties’’ in [21].
5 ‘‘Lemma forward_to_backward_simulation’’ in [21]
6 ‘‘Lemma one_step_single_env_refines_full_env’’ in [25],
here the validity of the oracle is defined with ‘‘valid_oracle’’.
7 ‘‘Lemma single_env_step_refines_full_env_step’’ in [24].
12
a smaller set of cores (𝐵). To accomplish this, we utilize induction
n each overlaying evaluation rule (evaluation with core set 𝐵) to

demonstrate this property.
When the evaluation matches the underlying evaluation exactly

(evaluation with core set 𝐴), it is evident that they both change
the state in the same way with the same rule. However, when the
evaluation is associated with a core that is not in 𝐵 but is in 𝐴, the
evaluation is represented as a SKIP rule in Fig. 9 for the overlaying
evaluation. This evaluation matches multiple concrete steps in the
underlying evaluation, including at least one step that generates an
event and other steps that do not generate events.

Additionally, the theorem intentionally simplifies to obscure intri-
cate technical challenges arising from a specific subtle case. In instances
where the high-level model evaluates scheduling events that generate
𝙴𝚈𝙸𝙴𝙻𝙳, the low-level machine does not proceed with its evaluation,
even though the high-level model advances. This introduces a technical
challenge in establishing a refinement relation for cases where the
source, high-level machine model, has fewer corresponding evaluations
compared to the number of steps required in the target, low-level
machine model. To address this, we introduce a measure function in the
refinement relation, 𝑚𝑎𝑡𝑐ℎ𝑒𝑒𝑠𝑡𝑎𝑡𝑒, which defines the length of the log.
This function checks the last event to determine whether it is 𝙴𝚈𝙸𝙴𝙻𝙳

or not. Consequently, the relation specifies how to match low-level
and high-level machine model states. The actual statement includes
additional propositions to address this technical issue; however, these
are omitted in Theorem 5 since they are unnecessary for understanding
the high-level statement of the theorem.

Theorem 6 (Single Core Refines Env. W. Single Core). Assuming that there
are environmental machine evaluation steps (𝙼𝚊𝚌𝚑env∗[{𝑐𝑖𝑑}] 𝜀{𝑐𝑖𝑑} 𝑒𝑠𝑡{𝑐𝑖𝑑}
𝑒𝑠𝑡′{𝑐𝑖𝑑}) associated with a core identifier 𝑐𝑖𝑑 (𝑐𝑖𝑑 ∈ S𝑐𝑜𝑟𝑒 where S𝑐𝑜𝑟𝑒
s the entire CPU set of the machine) and an environmental context
𝜀{𝑐𝑖𝑑}), a valid environmental context (𝜀𝑐𝑖𝑑) for a single core machine,
nd a single-core state (𝑠𝑠𝑡) related to the initial state of the evaluation
𝑠𝑡{𝑐𝑖𝑑} with a refinement relation (𝑚𝑎𝑡𝑐ℎ_𝑠𝑠𝑡𝑎𝑡𝑒 𝑒𝑠𝑡{𝑐𝑖𝑑} 𝑠𝑠𝑡). Then,
here always exists a valid updated environmental state (𝑠𝑠𝑡′) such that
he transition 𝙼𝚊𝚌𝚑𝚜𝚒[𝑐𝑖𝑑] 𝜀𝑐𝑖𝑑 𝑠𝑠𝑡 𝑠𝑠𝑡′ is satisfied and the relationship
𝑚𝑎𝑡𝑐ℎ_𝑠𝑠𝑡𝑎𝑡𝑒 𝑒𝑠𝑡′{𝑐𝑖𝑑} 𝑠𝑠𝑡′) holds true.8

Theorem 6 establishes the simulation between single-core evalu-
tion and environmental evaluation steps with a singleton core set.
his can be straightforwardly verified through a coercion between the
nvironmental machine model state with a single core, 𝑐𝑖𝑑, and a
ingle-core machine model with the same core. The existence of a valid
nvironmental context can also be shown through a simple coercion
etween a singleton set and a core identifier, so we do not explicitly
tate the theorem regarding a valid oracle in this step.

Although it is possible to state and prove the theorem that a single-
ore machine refines a multicore machine, we omit it in this section.
his is because the statement and proofs are straightforward and can
e derived by combining Theorems 3, 5, and 6. Furthermore, this
efinement theorem is also addressed as a subpart of the theorems
n the next section (Section 7). To establish the connection between
he machine models and proofs from Sections 4, 5, and 6 to the
ertiKOS proof in CCAL, it is necessary to identify appropriate concrete
efinitions for these abstractions. The next section provides a detailed
xplanation of how these machine models and proofs can be linked to
he concrete layer definition in CCAL.

8 ‘‘Lemma one_step_single_refines_env’’ in [24].

Journal of Systems Architecture 147 (2024) 103049J. Kim et al.

t
I
m
t
s

S
b
t
t
s
o

a
p
b
u
e
t
b
t
m
s
i
S

f
i

7

t
T
o
F
c
w
F
d
s
d
s
f

s
t
T
m
t
d

s
f
s
h

i

7. Link with 𝐂𝐂𝐀𝐋

The separation of abstract hardware state and semantics in Sec-
ion 4.1 greatly simplifies our machine models and refinement proofs.
t allows us to abstract away from the detailed instructions that the
achine must provide and focus on the essential aspects of the sys-

em while defining multiple machine syntax and semantics as well as
howing refinement proofs between those models.

However, in order to connect the multicore machine model in
implMM with the verified software that runs on concrete hardware
ased on a layer in CCAL, we need to introduce more concrete instruc-
ions and states into our machine models. To accomplish this, we need
o establish a connection between the abstract definitions (abstract
tates and transition rules) in SimplMM and the verified concurrent
perating systems CompCertX and CertiKOS.

This process involves two steps. First, instantiating all abstract states
nd transition rules in SimplMM, as shown in Fig. 5(a). This involves
roviding concrete definitions for the abstract states and specifying the
ehavior of the transition rules. Second, demonstrating that each eval-
ation of the connected CCAL layer precisely refines the corresponding
valuation of multiple machines in SimplMM. This involves proving
hat the concrete machine models in CCAL faithfully capture the
ehavior of the abstract machine models in SimplMM. By completing
hese steps, we establish a formal and precise link between the machine
odels and proofs in SimplMM and the verified concurrent operating

ystems in CCAL. This connection ensures that the verified software
n CCAL is correctly aligned with the multicore machine models in
implMM.

The mechanized version of state and instruction instantiation can be
ound in [27],9 while the top-level multicore linking theorem is defined
n [28].10

.1. State instantiation

As outlined in Section 2, the state of a CCAL layer is defined as a
uple (𝜌, 𝑚𝑒𝑚,𝐴) that includes registers, memory, and abstract states.
he task of instantiating this state involves assigning each component
r its sub-components into private and shared states, as depicted in
ig. 5(a). This step is accomplished through a case analysis of all
omponents in the bottom layer of the verified software using CCAL,
hich is 𝐿mboot [𝑐𝑖𝑑, 𝜀𝑐𝑖𝑑], the bottom layer of CertiKOS in our example.
or instance, all registers must fall into the private state. However,
etermining which regions of memory and abstract states belong to the
hared and private components is more complex and depends on the
efinitions used in the 𝐿mboot layer. Dividing memory into private and
hared states can be challenging, especially when the memory allows
or high expressiveness such as dynamic allocation.

Fortunately, CertiKOS, like all verification targets using CCAL,
implifies this process by statically allocating its kernel data structures
o each memory block in CompCertX, which is a compiler inside CCAL.
herefore, it is possible to divide memory into multiple blocks and
ap each block to either a private or shared state. Sub fields of

he abstract state in 𝐿mboot [𝑐𝑖𝑑, 𝜀𝑐𝑖𝑑] also require a case analysis to
etermine whether they should be fused into private or shared states.

One important field that should always be connected with the
hared state in SimplMM, particularly with 𝒍𝒐𝒈mc, is the logical history
ield in the abstract state. This field is only a small part of the abstract
tate definition in 𝐿mboot [𝑐𝑖𝑑, 𝜀𝑐𝑖𝑑], as shown in Fig. 10. The logical
istory field (log) keeps track of the history of atomic evaluations on

9 This relates to multiple definitions, with two important ones be-
ng ‘‘Global Instance hdsetting: HardWaredSetting’’ for state

instantiation and ‘‘Global Program Instance hdsem’’ for instruction
instantiation.

10 ‘‘Theorem concurrent_backward_simulation’’.
13
Fig. 10. Part of an abstract state in the bottom layer interface of CertiKOS.

Fig. 11. Part of 𝙼𝙱𝚘𝚘𝚝 layer interface: the bottom layer interface of CertiKOS.

shared resources, which corresponds to 𝒍𝒐𝒈mc in Fig. 5. Thus, these
events are mapped to the shared resources and atomic events in Fig. 5.
On the other hand, the CPU ID is considered a private state since we
are only focusing on a single CPU at this level.

7.2. Instruction instantiation

Furthermore, the abstract machine models presented in Sections 4
and 5 rely on abstract transition rules (as illustrated in Fig. 6(b))
and must be appropriately instantiated to connect machine models in
SimplMM with a specific layer of CCAL, such as 𝐿mboot [𝑐𝑖𝑑, 𝜀𝑐𝑖𝑑] for
CertiKOS. Similar to state instantiation, instantiating these transition
rules requires a case analysis of each rule defined in 𝐿mboot [𝑐𝑖𝑑, 𝜀𝑐𝑖𝑑].

Among the various languages involved in the compilation process
of CompCertX, we focus on LAsm parameterized by 𝐿mboot [𝑐𝑖𝑑, 𝜀𝑐𝑖𝑑],
as this level reveals the most hardware-related features. The transi-
tion rules in LAsm include instructions and function calls, as well as
primitives that trigger transitions in abstract states. Most instructions
in LAsm (e.g., arithmetic operations and other basic operations) fall
under private command transition rules, while cases for shared, re-
lease, and atomic transition rules are more complex. Unfortunately,
the built-in instructions in LAsm, which are the same as those in the
CompCert machine model, do not define concurrent behaviors. There-
fore, 𝐿mboot [𝑐𝑖𝑑, 𝜀𝑐𝑖𝑑] includes additional instructions, such as CAS and
FAI, as primitives to be used as building blocks for larger concurrent
objects (e.g., spinlocks, queuing locks, etc.). However, this extensi-
bility comes with a trade-off. Similar to the assembly instructions in
CompCert, the bottom layer primitives have not been verified. Their
semantics must be trusted, increasing the vulnerability of the verified
software. Reducing the size of the trusted computing base (TCB) is a
key goal for future work.

Fig. 11 illustrates components of 𝐿mboot [𝑐𝑖𝑑, 𝜀𝑐𝑖𝑑], which includes
several primitives that cannot be expressed using bare instructions in
CompCert. The definition of mboot represents a top-level set that de-
fines these primitives in the mboot layer. Here, compatlayer (cdata
RData) represents a layer type in CCAL. The ⊕ operator is used to

compose the transition definitions of these primitives into a set, where
each element consists of a primitive name and its specifications.11

The specifications for the primitives, such as get_CPU_ID_spec and
atomic_FAI_spec (FAI — fetch and increase), are pure Coq functions.
These functions take a list of arguments and an initial state as inputs,
and produce a result value and a final state as outputs. The speci-
fications serve both as functional semantics and as specifications for
the primitives. However, additional wrappers are needed to call these
Coq functions in C and Assembly code written at a specific layer in

11 Note that ⊕ is a polymorphic operator in CCAL and is used as a
composition operator for multiple modules, such as in Theorem 1.

Journal of Systems Architecture 147 (2024) 103049J. Kim et al.

w
w
t
C
e

l
d
o
a
v
o
h
C
n
l
i

m
b
o
1
p
f
p

c
i
p
m
p
S
w
i
r
i
s
F
e

C
s
c
o
i
A
c
r
e

CCAL. These wrappers bridge the gap between Coq and C functions
by handling the adjustment of Coq arguments to adhere to the C (or
assembly) calling convention, which are the purpose of gensem and
primcall_atomic_FAI_compatsem.

Mapping the abstract transition rules to SimplMM involves checking
the primitive name and assigning each primitive to one of the four
abstract transition rules. For example, the get_CPU_ID primitive is
mapped to the private transition rule, while atomic_FAI is mapped
to the atomic transition rule.

7.3. Connected theorems

With the proposed approaches and proofs, we have successfully con-
nected SimplMM with a layer of CCAL, specifically LAsm parameterized

ith 𝐿mboot [𝑐𝑖𝑑, 𝜀𝑐𝑖𝑑]. The formal connection is defined in Theorem 7,
hich establishes the relationship between the machine model with

he full CPU set (S𝑐𝑜𝑟𝑒) and an environmental context for a specific
PU (𝑐𝑖𝑑). The theorem assumes that [[𝑀]]

𝙼𝚊𝚌𝚑𝚖𝚌

(

𝐿[S𝑐𝑜𝑟𝑒 ,∅]
) defines the

xecution of program 𝑀 on 𝙼𝚊𝚌𝚑𝚖𝚌, instantiating its abstract states and
instructions with LAsm parameterized by layer 𝐿. On the other hand,
[[𝑀]]

LAsm
(

𝐿[𝑐𝑖𝑑,𝜀]
) defines the execution of program 𝑀 on LAsm, using

layer 𝐿 parameterized by CPU ID 𝑐𝑖𝑑 and concurrent context 𝜀. In the
context of the theorem, 𝙼𝚌𝚎𝚛𝚝𝚒𝚔𝚘𝚜 represents a CertiKOS kernel, 𝙼𝚞𝚜𝚎𝚛
is a user program, and 𝐿mboot is the bottom-most layer of the layered
stacks in CertiKOS. Given them, the theorem shows that two models
are formally consistent with each other. Demonstrating consistency
involves employing the simulation proof denoted by ⊑, coupled with
the refinement relation formed through the concatenation of multi-
ple refinement relations between intermediate machines, denoted as
𝑅SimplMM. Theorem 7 does not abstract any concrete code in 𝙼𝚌𝚎𝚛𝚝𝚒𝚔𝚘𝚜 as
abstracted layers, but rather converts the machine model from 𝙼𝚊𝚌𝚑𝚖𝚌
to LAsm.

The proofs follow the theorems presented in Section 6, with the
addition of concrete definitions for 𝐿mboot [𝑐𝑖𝑑, 𝜀𝑐𝑖𝑑] over LAsm in this
section. However, it is not currently possible to formally connect Theo-
rem 2 with Theorem 7 due to limitations in CompCert’s proof libraries.
The CompCert simulation proof library restricts the global state, in
which our environmental context resides, as a static definition. We
plan to explore alternative approaches to establish this connection in
future work. While it may require modifications to the design of both
SimplMM and CompCertX, we believe that with some adjustments, the
desired connection can be achieved, although it may entail several
proof modifications due to the complexity of the underlying tool,
CompCert.

Theorem 7 (SimplMM Refines LAsm).

[[𝙼𝚌𝚎𝚛𝚝𝚒𝚔𝚘𝚜 ⊕ 𝙼𝚞𝚜𝚎𝚛]]𝙼𝚊𝚌𝚑𝚖𝚌
(

𝐿mboot [S𝑐𝑜𝑟𝑒 ,∅]
) ⊑𝑅SimplMM

[[𝙼𝚌𝚎𝚛𝚝𝚒𝚔𝚘𝚜 ⊕ 𝙼𝚞𝚜𝚎𝚛]]LAsm
(

𝐿mboot [𝑐𝑖𝑑,𝜀𝑐𝑖𝑑]
)

With the discussions and analysis, we have established the theorem
of CertiKOS’s correctness with both CCAL and SimplMM in Theorem 8.
The theorem states that the behaviors of user program executions,
running on a LAsm machine parameterized by a 𝐿syscall layer, are
formally consistent with behaviors of CertiKOS code and user program
executions running on 𝙼𝚊𝚌𝚑𝚖𝚌. This consistency is achieved by instan-
tiating all abstract states and instructions in 𝙼𝚊𝚌𝚑𝚖𝚌 using LAsm with a
𝐿mboot layer. Establishing consistency also requires the utilization of the
simulation proof, represented by ⊑, in conjunction with the refinement
relation created through the concatenation of refinement relations for
SimplMM and CertiKOS. The proof of the theorem is straightforward,
as it combines Theorems 1 and 7.

Theorem 8 (CertiKOS Correctness With SimplMM).

[[𝙼𝚌𝚎𝚛𝚝𝚒𝚔𝚘𝚜 ⊕ 𝙼𝚞𝚜𝚎𝚛]]𝙼𝚊𝚌𝚑𝚖𝚌
(

𝐿mboot [S𝑐𝑜𝑟𝑒 ,∅]
) ⊑(𝑅SimplMM◦𝑅𝑐𝑒𝑟𝑡𝑖𝑘𝑜𝑠)

[[𝙼𝚞𝚜𝚎𝚛]] ()
14

LAsm 𝐿syscall[𝑐𝑖𝑑,𝜀] e
Table 1
Statistics for the linking framework.

Components LOC

Spec. Proof

Abstract states & machine definitions 979 1164
Refinement proofs 353 1211
Oracle validity proofs 246 648
Instantiating states and instructions 788 1984
Instantiating refinement proofs 778 2743

8. Evaluation

Table 1 provides statistical information on the proof efforts for
SimplMM and its integration with CertiKOS. The coqwc command
was used to count the number of specification, proof, and comment
lines in the Coq files. The number of specification lines includes all
objects and statements in the Coq files, such as functions, propositional
ogics, and theorem and lemma statements. These specification lines
efine the structure and behavior of the formal system. The number
f proofs corresponds to the number of tactic lines in the Coq files,
s tactics are used to construct and guide the proofs that establish the
alidity of the specified properties. The proofs provide formal evidence
f the correctness and consistency of the system. In our project, we
ave employed various user-defined Coq tactics and libraries from the
ompCert and CertiKOS projects, and the details of these libraries are
ot explicitly listed in the table. Given the fact that these existing
ibraries can handle most proofs within our system, we do not need to
ntroduce any significant user-defined libraries specific to this project.

The implementation of auxiliary definitions and multiple machine
odels comprises 969 lines of code. Furthermore, the demonstration of

asic properties for these abstract machine models involves 1164 lines
f code. The refinement proofs based on abstract definitions require
564 lines of code — 353 lines for specifications and 1211 lines for
roofs, while demonstrating the validity of multiple oracles accounts
or 894 lines of code — 246 lines for specifications and 648 lines for
roofs.

The most significant contribution to the lines of code comes from
onnecting the abstract states and instructions with concrete instances
n the CCAL layer (𝐿mboot [𝑐𝑖𝑑, 𝜀𝑐𝑖𝑑]) of CertiKOS. This process involves
erforming case analyses on each instruction and memory block in the
achine model of the connected layer. Additionally, the definition and
roof of wrappers at each level of the multiple machine models in
implMM contribute to the overall lines of code. Integrating SimplMM
ith CompCert libraries and simulation proofs also requires conform-

ng to the strict requirements of CompCert, including demonstrating
esponsiveness and determinism. This further adds to the lines of code
n the implementation. The instantiation of refinement proofs also
uffers from similar issues, resulting in redundant proofs at each level.
uture work will focus on removing these redundancies to enhance the
fficiency of the implementation.

There are also areas for potential improvement to consider.
ompCertX and CertiKOS are constructed on an older version of Coq,
pecifically Coq 8.4.6. This limitation restricts our ability to leverage
ertain cutting-edge tactics such as ‘lia’, ‘nia’, etc. However, based on
ur previous experience with similar projects, we believe that their
ncorporation would not significantly reduce the overall complexity.
dditionally, exploring the use of tools like Dafny, TLA, and/or Why3
ould be advantageous. It is important to note, though, that the general
eordering of concurrent behaviors, as expressed in our work through
vent reordering, remains a significant challenge that these tools have
ncountered thus far.

Journal of Systems Architecture 147 (2024) 103049J. Kim et al.

R
a
o
b
p
w
t
t
F
a
m
s
t
e
t
b

9. Related work and conclusion

Program Logics for Shared-Memory Concurrency. Multiple program
logics [10,11,29–46] have been developed to support modular verifi-
cation of concurrent programs. However, many of these logics, such
as Turon [37] and Iris [10], are not suitable for our work as they
focus on higher-order functions and complex non-blocking synchro-
nization, which our approach does not address. Instead, we offer a
unique contribution by mechanically connecting an explicit formal
multicore machine model to a toolkit for large-scale formal verification.
Our approach uses a global log, which is similar to the concept of
compositional subjective history traces proposed by Sergey et al. [43].
While Total-TaDA [45] is capable of proving the total correctness of
concurrent programs, it has not been automated with a proof assistant.

Parallel Composition in Concurrent Program Verification. Most
concurrent languages utilize a parallel composition operator, (𝐶1|𝐶2), to
create and terminate instances. In our approach to connecting SimplMM
and LAsm, we also deal with composition, but our method differs from
previous works. Our parallel composition must always be carried out
across the entire program 𝑃 and all CPUs. This distinction enables us
to analyze the behavior of CPUs within the concurrent environment,
considering both past and future events. Our composition considers the
semantics of running 𝑃 on the environmental machine model, even if a
CPU 𝑐 has not been executed before. In such cases, the CPU will always
consult its environment context to construct a global log.

Liang et al. [47–50] have proposed several rely-guarantee-based
simulation (RGSim) approaches that support parallel composition and
contextual refinement of concurrent objects. Contextual simulation
proof in CCAL and SimplMM is based on the extended version of

GSim, which includes auxiliary states such as environmental contexts
nd shared logs. Specifically, the proofs in CCAL and SimplMM rely
n the validity of environmental context behaviors, which are justified
y the behaviors of possible updates from the current instances of the
rogram (e.g., current CPU) on the shared log. This is possible since
e assume that all cores in the kernel execute the same code, and

he possible behaviors of other instances (e.g., CPUs) will be exactly
he same as the possible behaviors of the current instance (e.g., CPU).
or example, we assume that all cores/threads use the same spinlock
lgorithm to achieve mutual exclusion and use the same page memory
anagement codes. The validity of the environmental context is a

lightly related but separate concern from showing the existence of
he environmental context, as demonstrated in Theorems 2 and 4. The
nvironmental context behaviors capture the interactions and effects of
he multicore system, which are crucial for reasoning about the system’s
ehavior and ensuring correctness. CCAL and SimplMM have one more

distinctive feature compared to other works. Existing RGSim systems
are limited to reasoning about atomic objects in a single layer and
cannot vertically connect different machine models as we do in our
work. This vertical connection allows us to reason about the behavior of
the entire system across different layers and machine models, providing
a more comprehensive and flexible approach to formal verification.
The Bedrock [51] project provides a verified toolkit for multithreaded
programs, allowing dynamic allocation and connecting thread-local
services with underlying library components. However, it does not in-
troduce and vertically connect different machine models. CCR [52] also
presents a new method for compositional software formal verification.
However, they do not support concurrency. We expect that SimplMM
can be easily connected with the tool when they support concurrency
in the future.

Extending CompCert and Verified Compilation. A previous study
[53] extends the original CompCert compiler [19] to support a compo-
sitional, thread-safe compilation of concurrent Clight programs. They
adopt the interaction semantics proposed by Beringer et al. [54] which
15

handles synchronization-primitive calls as external calls. However, this
work is not suitable for large-scale software verification as it does not
support a layered ClightX language like CompCertX. Additionally, the
authors do not explicitly introduce multicore semantics in a formal
manner, despite their interaction model being designed to support
shared-memory concurrency.

Other studies have also modified the CompCert compiler to sup-
port separate compilation and composition, such as Kang et al. [55]
and Ramananandro et al. [56], but they do not address concurrency.
Other works in verified compilation [57–60] also lack support for
concurrent and/or compositional systems in a layered manner. Com-
pCertTSO [17] presents the CompCert extension that supports x86 TSO
model. However, they do not provide compositional approach as CCAL
and CompCertX does, thus there are no large-scale verified software
with the extension yet. Extending SimplMM to support TSO model
is one of our future directions. There are also recent extensions of
CompCert [7,8], but they focus on compositionality rather than the
underlying model like SimplMM.

CCAL As our target CPU-local machine model, we use CCAL, which
is an extended version of CAL [18]. Both CCAL and our machine
model connections provide contextual correctness properties using
termination-sensitive forward simulation techniques [19,61], which is
also described in Section 2.2. This makes it easy to establish a con-
nection between the verification on CCAL and SimplMM. Furthermore,
this property is stronger than the partial or total correctness properties
guaranteed by Hoare logic-style verification [62–65]. Two previous
works, CIVL [44] and FCSL [11], proposed a way to build and prove
concurrent programs in a layered manner, similar to CCAL. To the
best of our knowledge, neither of them supports the formal linking
of different machine models that we provide. However, we believe
that our approach for defining formally connected multicore machine
models could also be applied in their tools.

Multithreaded Library (Kernel) Verification. A significant amount of
work has been done in the area of kernel verification, with several ef-
forts aimed at proving the correctness of multithreaded library (kernel)
implementations. For example, seL4 [66,67], Verve [68], and hyper-
kernel [69] have tackled the challenge of verifying kernels. Among
them, Xu et al. [46] developed a new verification framework that
combines RGSim and Feng et al.’s program logic [70] to reason about
interrupts. They applied the framework to verify multiple key modules
written in C in 𝜇C/OS-II, a preemptive kernel. Other works, such as
seL4 [66], Verve [68], and hyperkernel [69], have aimed to prove sev-
eral properties using a per-core big kernel lock, which provides limited
concurrency support. Additionally, the Verisoft team used VCC [71]
to verify spinlocks in a hypervisor, directly postulating a Hoare logic
instead of relying on operational semantics for C. However, none of
these works have focused on the formal linking between a multicore
machine model and a local machine model, which is a crucial aspect
of our approach. SeKVM [22] verify parts of KVM based using CCAL
with assuming relaxed memory model as their underlying hardware.
However, they omit providing concrete semantics and connections for
those underlying model as SimplMM does. One future direction is to
extend SimplMM to support more complex hardware models, such as
the underlying hardware model of SeKVM.

10. Conclusion and future works

This paper presents SimplMM, a framework for intermediate and
multicore machine models, that serves as a subsystem of CCAL, a
toolkit for formal verification of C/Asm programs. We also demonstrate
the relationship between the multicore machine model in SimplMM and
LAsm, the machine model used by CCAL to build their verified software
stack with CompCertX. The main difference between the multicore
machine and LAsm is that SimplMM explicitly represents other CPUs,
while LAsm abstracts them as a concurrent context that requires val-

idation. To establish the connection between SimplMM and LAsm, we

Journal of Systems Architecture 147 (2024) 103049J. Kim et al.
use state and command abstractions, along with multiple intermediate
machine models, and provide a formal connection between all models.
To showcase the effectiveness of SimplMM in conjunction with CCAL,
we extend an existing operating system verification, CertiKOS, with
fine-grained shared memory concurrency.

In the future, we plan to expand our approach to support more
relaxed machine models, including weak memory models and dynamic
memory allocation, and integrate it with other existing verification
tools.

CRediT authorship contribution statement

Jieung Kim: Conceptualization, Methodology, Software. Ronghui
Gu: Conceptualization, Methodology, Software. Zhong Shao: Concep-
tualization, Methodology.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Jieung Kim reports financial support was provided by National Science
Foundation. Zhong Shao reports financial support was provided by
National Science Foundation. Ronghui Gu reports financial support
was provided by National Science Foundation. Jieung Kim reports
financial support was provided by Defense Advanced Research Projects
Agency. Zhong Shao reports financial support was provided by De-
fense Advanced Research Projects Agency. Ronghui Gu reports financial
support was provided by Defense Advanced Research Projects Agency.
Ronghui Gu and Zhong Shao are co-founders of CertiK. Jieung Kim was
previously employed by Google.

Data availability

No data was used for the research described in the article.

Acknowledgments

This research is based on work supported in part by National Science
Foundation (NSF, USA) grants 1521523 and 1715154 and DARPA, USA
grants FA8750-12-2-0293, FA8750-16-2-0274, and FA8750-15-C-0082.
The U.S. Government is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copyright notation
thereon. The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or implied, of
DARPA or the U.S. Government. This work was also supported by INHA
UNIVERSITY Research Grant.

References

[1] F. Erata, S. Deng, F. Zaghloul, W. Xiong, O. Demir, J. Szefer, Survey of ap-
proaches and techniques for security verification of computer systems, J. Emerg.
Technol. Comput. Syst. 19 (1) (2023) http://dx.doi.org/10.1145/3564785.

[2] R. Gu, Z. Shao, J. Kim, X. Wu, J. Koenig, V. Sjöberg, H. Chen, D. Costanzo,
T. Ramananandro, Certified concurrent abstraction layers, in: ACM SIGPLAN
Conference on Programming Language Design and Implementation, in: PLDI
2018, 2018.

[3] C. Hawblitzel, J. Howell, J.R. Lorch, A. Narayan, B. Parno, D. Zhang, B. Zill,
Ironclad apps: End-to-end security via automated full-system verification, in:
Proceedings of the 11th USENIX Conference on Operating Systems Design and
Implementation, OSDI ’14, USENIX Association, Berkeley, CA, USA, 2014, pp.
165–181, URL http://dl.acm.org/citation.cfm?id=2685048.2685062.

[4] C. Hawblitzel, J. Howell, M. Kapritsos, J.R. Lorch, B. Parno, M.L. Roberts,
S. Setty, B. Zill, IronFleet: Proving practical distributed systems correct, in:
Proceedings of the 25th Symposium on Operating Systems Principles, SOSP ’15,
ACM, New York, NY, USA, 2015, pp. 1–17, http://dx.doi.org/10.1145/2815400.
2815428, URL http://doi.acm.org/10.1145/2815400.2815428.
16
[5] R. Gu, Z. Shao, H. Chen, X. Wu, J. Kim, V. Sjöberg, D. Costanzo, CertiKOS:
An extensible architecture for building certified concurrent OS kernels, in:
Proceedings of the 12th USENIX Conference on Operating Systems Design and
Implementation, OSDI ’16, USENIX Association, Berkeley, CA, USA, 2016, pp.
653–669, URL http://dl.acm.org/citation.cfm?id=3026877.3026928.

[6] H. Chen, X.N. Wu, Z. Shao, J. Lockerman, R. Gu, Toward compositional
verification of interruptible OS kernels and device drivers, in: Proceedings of
the 37th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’16, ACM, New York, NY, USA, 2016, pp. 431–447,
http://dx.doi.org/10.1145/2908080.2908101, URL http://doi.acm.org/10.1145/
2908080.2908101.

[7] J. Koenig, Z. Shao, CompCertO: Compiling certified open c components, in: Pro-
ceedings of the 42nd ACM SIGPLAN International Conference on Programming
Language Design and Implementation, in: PLDI 2021, Association for Computing
Machinery, New York, NY, USA, 2021, pp. 1095–1109, http://dx.doi.org/10.
1145/3453483.3454097.

[8] Y. Song, M. Cho, D. Kim, Y. Kim, J. Kang, C. Hur, CompCertM: CompCert with
C-assembly linking and lightweight modular verification, Proc. ACM Program.
Lang. 4 (POPL) (2020).

[9] A. Appel, Verified software toolchain, in: G. Barthe (Ed.), ESOP’11: European
Symposium on Programming, in: LNCS, vol. 6602, Springer, 2011, pp. 1–17.

[10] R. Jung, D. Swasey, F. Sieczkowski, K. Svendsen, A. Turon, L. Birkedal, D. Dreyer,
Iris: Monoids and invariants as an orthogonal basis for concurrent reasoning, in:
Proc. 42nd ACM Symposium on Principles of Programming Languages, POPL’15,
2015, pp. 637–650.

[11] I. Sergey, A. Nanevski, A. Banerjee, Mechanized verification of fine-grained
concurrent programs, in: Proc. 2015 ACM Conference on Programming Language
Design and Implementation, PLDI’15, 2015, pp. 77–87.

[12] J.R. Wilcox, D. Woos, P. Panchekha, Z. Tatlock, X. Wang, M.D. Ernst, T.
Anderson, Verdi: A framework for implementing and formally verifying dis-
tributed systems, in: Proceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’15, ACM, New York,
NY, USA, 2015, pp. 357–368, http://dx.doi.org/10.1145/2737924.2737958, URL
http://doi.acm.org/10.1145/2737924.2737958.

[13] D. Woos, J.R. Wilcox, S. Anton, Z. Tatlock, M.D. Ernst, T. Anderson, Planning
for change in a formal verification of the raft consensus protocol, in: Proceedings
of the 5th ACM SIGPLAN Conference on Certified Programs and Proofs, in: CPP
2016, ACM, New York, NY, USA, 2016, pp. 154–165, http://dx.doi.org/10.1145/
2854065.2854081, URL http://doi.acm.org/10.1145/2854065.2854081.

[14] H. Chen, D. Ziegler, T. Chajed, A. Chlipala, M.F. Kaashoek, N. Zeldovich, Using
crash hoare logic for certifying the FSCQ file system, in: Proceedings of the
25th Symposium on Operating Systems Principles, SOSP ’15, ACM, New York,
NY, USA, 2015, pp. 18–37, http://dx.doi.org/10.1145/2815400.2815402, URL
http://doi.acm.org/10.1145/2815400.2815402.

[15] X. Leroy, The CompCert C compiler, 2005–2013, http://compcert.inria.fr/
compcert-C.html.

[16] J.Y. Shin, J. Kim, W. Honoré, H. Vanzetto, S. Radhakrishnan, M. Balakrishnan,
Z. Shao, WormSpace: A modular foundation for simple, verifiable distributed
systems, in: Proceedings of the ACM Symposium on Cloud Computing, SoCC ’19,
Association for Computing Machinery, New York, NY, USA, 2019, pp. 299–311,
http://dx.doi.org/10.1145/3357223.3362739.

[17] J. Sevcík, V. Vafeiadis, F.Z. Nardelli, S. Jagannathan, P. Sewell, CompCertTSO:
A verified compiler for relaxed-memory concurrency, J. ACM 60 (3) (2013).

[18] R. Gu, J. Koenig, T. Ramananandro, Z. Shao, X.N. Wu, S.C. Weng, H. Zhang, Y.
Guo, Deep specifications and certified abstraction layers, in: Proceedings of the
42Nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’15, ACM, New York, NY, USA, 2015, pp. 595–608, http://dx.
doi.org/10.1145/2676726.2676975, URL http://doi.acm.org/10.1145/2676726.
2676975.

[19] X. Leroy, The CompCert verified compiler, 2005–2023, http://compcert.inria.fr/.
[20] The Coq development team, The Coq proof assistant, 1999–2018, http://coq.

inria.fr.
[21] X. Leroy, Module smallstep, the CompCert verified compiler, 2005–2023, https:

//compcert.org/doc/html/compcert.common.Smallstep.html.
[22] S.W. Li, X. Li, R. Gu, J. Nieh, J. Zhuang Hui, A secure and formally verified

Linux KVM hypervisor, in: 2021 IEEE Symposium on Security and Privacy, SP,
2021, pp. 1782–1799, http://dx.doi.org/10.1109/SP40001.2021.00049.

[23] J. Kim, V. Sjöberg, R. Gu, Z. Shao, Safety and liveness of MCS lock–layer by
layer, in: 15th Asian Symposium on Programming Languages and Systems, APLAS
2017, in: Lecture Notes in Computer Science, Springer, 2017.

[24] R. Gu, Z. Shao, H. Chen, X. Wu, J. Kim, V. Sjöberg, D. Costanzo, CertiKOS
artifact: SimplMM refinement proofs. https://certikos.github.io/certikos-artifact/
html/mcertikos.conlib.conmclib.Concurrent_Linking_Prop.html.

[25] R. Gu, Z. Shao, H. Chen, X. Wu, J. Kim, V. Sjöberg, D. Costanzo, CertiKOS
Artifact: SimplMM Oracle Existence proofs, https://certikos.github.io/certikos-
artifact/html/mcertikos.conlib.conmclib.Concurrent_Linking_Additional_Prop.
html.

[26] X. Leroy, Formal certification of a compiler back-end or: Programming a compiler
with a proof assistant, in: Proceedings of the 33rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL’06, 2006.

http://dx.doi.org/10.1145/3564785
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb2
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb2
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb2
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb2
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb2
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb2
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb2
http://dl.acm.org/citation.cfm?id=2685048.2685062
http://dx.doi.org/10.1145/2815400.2815428
http://dx.doi.org/10.1145/2815400.2815428
http://dx.doi.org/10.1145/2815400.2815428
http://doi.acm.org/10.1145/2815400.2815428
http://dl.acm.org/citation.cfm?id=3026877.3026928
http://dx.doi.org/10.1145/2908080.2908101
http://doi.acm.org/10.1145/2908080.2908101
http://doi.acm.org/10.1145/2908080.2908101
http://doi.acm.org/10.1145/2908080.2908101
http://dx.doi.org/10.1145/3453483.3454097
http://dx.doi.org/10.1145/3453483.3454097
http://dx.doi.org/10.1145/3453483.3454097
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb8
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb8
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb8
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb8
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb8
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb9
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb9
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb9
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb10
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb10
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb10
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb10
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb10
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb10
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb10
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb11
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb11
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb11
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb11
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb11
http://dx.doi.org/10.1145/2737924.2737958
http://doi.acm.org/10.1145/2737924.2737958
http://dx.doi.org/10.1145/2854065.2854081
http://dx.doi.org/10.1145/2854065.2854081
http://dx.doi.org/10.1145/2854065.2854081
http://doi.acm.org/10.1145/2854065.2854081
http://dx.doi.org/10.1145/2815400.2815402
http://doi.acm.org/10.1145/2815400.2815402
http://compcert.inria.fr/compcert-C.html
http://compcert.inria.fr/compcert-C.html
http://compcert.inria.fr/compcert-C.html
http://dx.doi.org/10.1145/3357223.3362739
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb17
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb17
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb17
http://dx.doi.org/10.1145/2676726.2676975
http://dx.doi.org/10.1145/2676726.2676975
http://dx.doi.org/10.1145/2676726.2676975
http://doi.acm.org/10.1145/2676726.2676975
http://doi.acm.org/10.1145/2676726.2676975
http://doi.acm.org/10.1145/2676726.2676975
http://compcert.inria.fr/
http://coq.inria.fr
http://coq.inria.fr
http://coq.inria.fr
https://compcert.org/doc/html/compcert.common.Smallstep.html
https://compcert.org/doc/html/compcert.common.Smallstep.html
https://compcert.org/doc/html/compcert.common.Smallstep.html
http://dx.doi.org/10.1109/SP40001.2021.00049
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb23
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb23
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb23
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb23
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb23
https://certikos.github.io/certikos-artifact/html/mcertikos.conlib.conmclib.Concurrent_Linking_Prop.html
https://certikos.github.io/certikos-artifact/html/mcertikos.conlib.conmclib.Concurrent_Linking_Prop.html
https://certikos.github.io/certikos-artifact/html/mcertikos.conlib.conmclib.Concurrent_Linking_Prop.html
https://certikos.github.io/certikos-artifact/html/mcertikos.conlib.conmclib.Concurrent_Linking_Additional_Prop.html
https://certikos.github.io/certikos-artifact/html/mcertikos.conlib.conmclib.Concurrent_Linking_Additional_Prop.html
https://certikos.github.io/certikos-artifact/html/mcertikos.conlib.conmclib.Concurrent_Linking_Additional_Prop.html
https://certikos.github.io/certikos-artifact/html/mcertikos.conlib.conmclib.Concurrent_Linking_Additional_Prop.html
https://certikos.github.io/certikos-artifact/html/mcertikos.conlib.conmclib.Concurrent_Linking_Additional_Prop.html
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb26
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb26
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb26
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb26
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb26

Journal of Systems Architecture 147 (2024) 103049J. Kim et al.
[27] R. Gu, Z. Shao, H. Chen, X. Wu, J. Kim, V. Sjöberg, D. Costanzo,
CertiKOS artifact: SimplMM and CertiKOS abstract definition instantiation.
https://certikos.github.io/certikos-artifact/html/mcertikos.multicore.semantics.
HWSemImpl.html.

[28] R. Gu, Z. Shao, H. Chen, X. Wu, J. Kim, V. Sjöberg, D. Costanzo, CertiKOS arti-
fact: SimplMM and CertiKOS linking. https://certikos.github.io/certikos-artifact/
html/mcertikos.multicore.Concurrent_Linking.html.

[29] T. Dinsdale-Young, M. Dodds, P. Gardner, M.J. Parkinson, V. Vafeiadis,
Concurrent abstract predicates, in: ECOOP’10, 2010, pp. 504–528.

[30] P.W. O’Hearn, Resources, concurrency and local reasoning, in: Proc. 15th
International Conference on Concurrency Theory, CONCUR’04, 2004, pp. 49–67.

[31] S. Brookes, A semantics for concurrent separation logic, in: Proc. 15th
International Conference on Concurrency Theory, CONCUR’04, 2004, pp. 16–34.

[32] X. Feng, R. Ferreira, Z. Shao, On the relationship between concurrent separation
logic and assume-guarantee reasoning, in: Proc. 16th European Symposium on
Programming, ESOP’07, 2007, pp. 173–188.

[33] V. Vafeiadis, M. Parkinson, A marriage of rely/guarantee and separation logic,
in: Proc. 18th International Conference on Concurrency Theory, CONCUR’07,
2007, pp. 256–271.

[34] X. Feng, Local rely-guarantee reasoning, in: Proc. 36th ACM Symposium on
Principles of Programming Languages, POPL’09, 2009, pp. 315–327.

[35] B. Jacobs, F. Piessens, Expressive modular fine-grained concurrency specification,
in: Proc. 38th ACM Symposium on Principles of Programming Languages,
POPL’11, 2011, pp. 133–146.

[36] A. Gotsman, N. Rinetzky, H. Yang, Verifying concurrent memory reclamation
algorithms with grace, in: Proc. 22nd European Symposium on Programming,
ESOP’13, 2013, pp. 249–269.

[37] A. Turon, J. Thamsborg, A. Ahmed, L. Birkedal, D. Dreyer, Logical relations
for fine-grained concurrency, in: Proc. 40th ACM Symposium on Principles of
Programming Languages, POPL’13, 2013, pp. 343–356.

[38] A. Turon, D. Dreyer, L. Birkedal, Unifying refinement and Hoare-style reason-
ing in a logic for higher-order concurrency, in: Proc. 2013 ACM SIGPLAN
International Conference on Functional Programming, ICFP’13, 2013, pp.
377–390.

[39] R. Ley-Wild, A. Nanevski, Subjective auxiliary state for coarse-grained concur-
rency, in: Proc. 40th ACM Symposium on Principles of Programming Languages,
POPL’13, 2013, pp. 561–574.

[40] A. Nanevski, R. Ley-Wild, I. Sergey, G.A. Delbianco, Communicating state
transition systems for fine-grained concurrent resources, in: Proc. 23rd European
Symposium on Programming, ESOP’14, 2014, pp. 290–310.

[41] T. Dinsdale-Young, L. Birkedal, P. Gardner, M. Parkinson, H. Yang, Views: Com-
positional reasoning for concurrent programs, in: Proceedings of the 40th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’13, ACM, New York, NY, USA, 2013, pp. 287–300, http://dx.doi.org/10.
1145/2429069.2429104, URL http://doi.acm.org/10.1145/2429069.2429104.

[42] P.D.R. Pinto, T. Dinsdale-Young, P. Gardner, Tada: A logic for time and data ab-
straction, in: Proc. 28th European Conference on Object-Oriented Programming,
ECOOP’14, 2014, pp. 207–231.

[43] I. Sergey, A. Nanevski, A. Banerjee, Specifying and verifying concurrent algo-
rithms with histories and subjectivity, in: Proc. 24th European Symposium on
Programming, ESOP’15, 2015, pp. 333–358.

[44] C. Hawblitzel, E. Petrank, S. Qadeer, S. Tasiran, Automated and modular
refinement reasoning for concurrent programs, in: Proc. 27th International
Conference on Computer Aided Verification, CAV’15, 2015, pp. 449–465.

[45] P.D.R. Pinto, T. Dinsdale-Young, P. Gardner, J. Sutherland, Modular termination
verification for non-blocking concurrency, in: Proc. 25th European Symposium
on Programming, ESOP’16, 2016, pp. 176–201.

[46] F. Xu, M. Fu, X. Feng, X. Zhang, H. Zhang, Z. Li, A practical verification
framework for preemptive OS kernels, in: Proc. 28th International Conference
on Computer Aided Verification (CAV’16), Part II, 2016, pp. 59–79.

[47] H. Liang, X. Feng, M. Fu, A rely-guarantee-based simulation for verifying con-
current program transformations, in: Proc. 39th ACM Symposium on Principles
of Programming Languages, POPL’12, 2012, pp. 455–468.

[48] H. Liang, X. Feng, Z. Shao, Compositional verification of termination-preserving
refinement of concurrent programs, in: Proc. Joint Meeting of the 23rd EACSL
Annual Conference on Computer Science Logic and 29th IEEE Symposium on
Logic in Computer Science, CSL-LICS’14, 2014, pp. 65:1–65:10.

[49] H. Liang, X. Feng, A program logic for concurrent objects under fair scheduling,
in: Proc. 43rd ACM Symposium on Principles of Programming Languages,
POPL’16, 2016, pp. 385–399.
17
[50] H. Liang, X. Feng, Progress of concurrent objects with partial methods, Proc.
ACM Program. Lang. 2 (POPL) (2017) 20:1–20:31, http://dx.doi.org/10.1145/
3158108, URL http://doi.acm.org/10.1145/3158108.

[51] A. Chlipala, Mostly-automated verification of low-level programs in computa-
tional separation logic, in: PLDI’11, 2011, pp. 234–245.

[52] Y. Song, M. Cho, D. Lee, C.K. Hur, M. Sammler, D. Dreyer, Conditional contextual
refinement 7 (popl), 2023, http://dx.doi.org/10.1145/3571232.

[53] G. Stewart, L. Beringer, S. Cuellar, A.W. Appel, Compositional CompCert, in:
Proc. 42nd ACM Symposium on Principles of Programming Languages, POPL’15,
2015, pp. 275–287.

[54] L. Beringer, G. Stewart, R. Dockins, A.W. Appel, Verified compilation for shared-
memory c, in: Proc. 23rd European Symposium on Programming, ESOP’14, 2014,
pp. 107–127.

[55] J. Kang, Y. Kim, C.-K. Hur, D. Dreyer, V. Vafeiadis, Lightweight verification
of separate compilation, in: Proc. 43rd ACM Symposium on Principles of
Programming Languages, POPL’16, 2016, pp. 178–190.

[56] T. Ramananandro, Z. Shao, S.C. Weng, J. Koenig, Y. Fu, A compositional
semantics for verified separate compilation and linking, in: Proceedings of the
2015 Conference on Certified Programs and Proofs, CPP ’15, ACM, New York,
NY, USA, 2015, pp. 3–14, http://dx.doi.org/10.1145/2676724.2693167, URL
http://doi.acm.org/10.1145/2676724.2693167.

[57] A. Lochbihler, Verifying a compiler for Java threads, in: ESOP, 2010, pp.
427–447.

[58] J. Ševčík, V. Vafeiadis, F.Z. Nardelli, S. Jagannathan, P. Sewell, Relaxed-memory
concurrency and verified compilation, in: POPL, 2011, pp. 43–54.

[59] J. Zhao, S. Nagarakatte, M.M. Martin, S. Zdancewic, Formal verification of
SSA-based optimizations for LLVM, in: Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’13,
ACM, New York, NY, USA, 2013, pp. 175–186, http://dx.doi.org/10.1145/
2491956.2462164, URL http://doi.acm.org/10.1145/2491956.2462164.

[60] J. Kang, Y. Kim, Y. Song, J. Lee, S. Park, M.D. Shin, Y. Kim, S. Cho, J. Choi,
C.K. Hur, K. Yi, Crellvm: Verified credible compilation for LLVM, in: Proceedings
of the 39th ACM SIGPLAN Conference on Programming Language Design and
Implementation, in: PLDI 2018, ACM, New York, NY, USA, 2018, pp. 631–645,
http://dx.doi.org/10.1145/3192366.3192377, URL http://doi.acm.org/10.1145/
3192366.3192377.

[61] N.A. Lynch, F.W. Vaandrager, Forward and backward simulations: I. Untimed
systems, Inform. and Comput. 121 (2) (1995) 214–233.

[62] C.A.R. Hoare, An axiomatic basis for computer programming, Commun. ACM 12
(10) (1969) 576–580.

[63] J.C. Reynolds, Separation logic: A logic for shared mutable data structures, in:
Proc. 17th IEEE Symposium on Logic in Computer Science, LICS’02, 2002, pp.
55–74.

[64] M. Barnett, B.Y.E. Chang, R. DeLine, B. Jacobs, K.R.M. Leino, Boogie: A modular
reusable verifier for object-oriented programs, in: Proc. 4th Symposium on
Formal Methods for Components and Objects, FMCO’05, 2005, pp. 364–387.

[65] A. Nanevski, G. Morrisett, L. Birkedal, Polymorphism and separation in Hoare
type theory, in: Proc. 2006 ACM SIGPLAN International Conference on Functional
Programming, ICFP’06, 2006, pp. 62–73.

[66] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D.
Elkaduwe, K. Engelhardt, et al., seL4: Formal verification of an OS kernel, in:
Proc. 22nd ACM Symposium on Operating System Principles, SOSP’09, 2009, pp.
207–220.

[67] G. Klein, J. Andronick, K. Elphinstone, T. Murray, T. Sewell, R. Kolanski, G.
Heiser, Comprehensive formal verification of an OS microkernel, ACM Trans.
Comput. Syst. 32 (1) (2014) 2:1–2:70.

[68] J. Yang, C. Hawblitzel, Safe to the last instruction: Automated verification of
a type-safe operating system, in: Proc. 2010 ACM Conference on Programming
Language Design and Implementation, PLDI’10, 2010, pp. 99–110.

[69] L. Nelson, H. Sigurbjarnarson, K. Zhang, D. Johnson, J. Bornholt, E. Torlak, X.
Wang, Hyperkernel: Push-button verification of an OS kernel, in: Proceedings of
the 26th Symposium on Operating Systems Principles, SOSP ’17, ACM, New York,
NY, USA, 2017, pp. 252–269, http://dx.doi.org/10.1145/3132747.3132748, URL
http://doi.acm.org/10.1145/3132747.3132748.

[70] X. Feng, Z. Shao, Y. Dong, Y. Guo, Certifying low-level programs with hard-
ware interrupts and preemptive threads, in: Proc. 2008 ACM Conference on
Programming Language Design and Implementation, PLDI’08, 2008, pp. 170–182.

[71] D. Leinenbach, T. Santen, Verifying the Microsoft Hyper-V hypervisor with VCC,
in: Proc. 2nd World Congress on Formal Methods, 2009, pp. 806–809.

https://certikos.github.io/certikos-artifact/html/mcertikos.multicore.semantics.HWSemImpl.html
https://certikos.github.io/certikos-artifact/html/mcertikos.multicore.semantics.HWSemImpl.html
https://certikos.github.io/certikos-artifact/html/mcertikos.multicore.semantics.HWSemImpl.html
https://certikos.github.io/certikos-artifact/html/mcertikos.multicore.Concurrent_Linking.html
https://certikos.github.io/certikos-artifact/html/mcertikos.multicore.Concurrent_Linking.html
https://certikos.github.io/certikos-artifact/html/mcertikos.multicore.Concurrent_Linking.html
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb29
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb29
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb29
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb30
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb30
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb30
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb31
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb31
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb31
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb32
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb32
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb32
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb32
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb32
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb33
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb33
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb33
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb33
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb33
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb34
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb34
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb34
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb35
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb35
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb35
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb35
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb35
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb36
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb36
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb36
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb36
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb36
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb37
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb37
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb37
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb37
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb37
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb38
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb38
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb38
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb38
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb38
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb38
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb38
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb39
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb39
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb39
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb39
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb39
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb40
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb40
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb40
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb40
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb40
http://dx.doi.org/10.1145/2429069.2429104
http://dx.doi.org/10.1145/2429069.2429104
http://dx.doi.org/10.1145/2429069.2429104
http://doi.acm.org/10.1145/2429069.2429104
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb42
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb42
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb42
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb42
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb42
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb43
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb43
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb43
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb43
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb43
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb44
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb44
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb44
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb44
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb44
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb45
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb45
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb45
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb45
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb45
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb46
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb46
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb46
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb46
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb46
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb47
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb47
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb47
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb47
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb47
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb48
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb48
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb48
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb48
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb48
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb48
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb48
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb49
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb49
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb49
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb49
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb49
http://dx.doi.org/10.1145/3158108
http://dx.doi.org/10.1145/3158108
http://dx.doi.org/10.1145/3158108
http://doi.acm.org/10.1145/3158108
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb51
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb51
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb51
http://dx.doi.org/10.1145/3571232
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb53
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb53
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb53
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb53
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb53
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb54
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb54
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb54
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb54
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb54
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb55
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb55
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb55
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb55
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb55
http://dx.doi.org/10.1145/2676724.2693167
http://doi.acm.org/10.1145/2676724.2693167
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb57
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb57
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb57
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb58
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb58
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb58
http://dx.doi.org/10.1145/2491956.2462164
http://dx.doi.org/10.1145/2491956.2462164
http://dx.doi.org/10.1145/2491956.2462164
http://doi.acm.org/10.1145/2491956.2462164
http://dx.doi.org/10.1145/3192366.3192377
http://doi.acm.org/10.1145/3192366.3192377
http://doi.acm.org/10.1145/3192366.3192377
http://doi.acm.org/10.1145/3192366.3192377
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb61
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb61
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb61
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb62
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb62
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb62
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb63
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb63
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb63
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb63
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb63
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb64
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb64
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb64
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb64
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb64
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb65
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb65
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb65
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb65
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb65
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb66
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb66
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb66
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb66
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb66
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb66
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb66
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb67
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb67
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb67
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb67
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb67
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb68
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb68
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb68
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb68
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb68
http://dx.doi.org/10.1145/3132747.3132748
http://doi.acm.org/10.1145/3132747.3132748
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb70
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb70
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb70
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb70
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb70
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb71
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb71
http://refhub.elsevier.com/S1383-7621(23)00228-X/sb71

	SimplMM: A simplified and abstract multicore hardware model for large scale system software formal verification
	Introduction
	Background
	Coq
	Smallstep Library in CompCert
	Certified Concurrent Abstraction Layers
	CertiKOS on CCAL

	SimplMM in a nutshell
	Multicore Machine
	Abstract Hardware State and Transition Rules
	Multicore Machine Syntax and Semantics

	Introduce CPU Local Machine Model
	Environmental Machine Model
	CPU-local Machine Model and Optimizations

	Refinement Proofs
	Link with CCAL
	State Instantiation
	Instruction Instantiation
	Connected Theorems

	Evaluation
	Related Work and Conclusion
	Conclusion and Future Works
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

