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A B S T R A C T

This paper presents 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌, an extension of the layer-based software formal verification toolkit CCAL (Gu
et al., 2018). 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌 is specifically designed to provide better expressiveness and proof management for
thread abstraction in multithreaded libraries. Thread abstraction isolates the behavior of each thread from others
when providing a top-level formal specification for software. Compared to the original CCAL, 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌 offers
significant improvements in this regard.

CCAL is a verification framework that enables a layered approach to building certified software, as
demonstrated by multiple examples (Gu et al. 2016; Li et al. 2021; Shin et al. 2019). Obviously, its main
targets usually include multithread libraries, which support significant improvement in the utilization and
isolation of system resources. However, it poses new challenges for formal verification. Firstly, it requires
a sudden change in the granularity of concurrency during the implementation and verification of the target
software. Typically, systems are associated with software schedulers that are built on top of several underlying
components in the system (e.g., thread spawn, yield, sleep, and wake-up). Due to the software scheduler, these
systems can be divided into low-level components consisting of modules that the software scheduler depends
on (e.g., allocators for shared resources and scheduling queues) and high-level components that use software
schedulers (e.g., condition variables, semaphores, and IPCs). Therefore, software formal verification on those
systems has to provide proper method to deal with those distinct features, which is usually abstracting other
threads’ behavior as much as possible to provide an independent thread model and its formal specification.
Secondly, it requires handling side effects from other threads, such as dynamic resource allocation from parents
with proper isolation of all threads from each other.

CCAL has limited support for two crucial aspects of formal verification in multithreaded systems. Firstly, its
previous thread abstraction method does not handle the side effects caused by a parent thread during dynamic
initial state allocation properly. Secondly, the proofs produced by CCAL are tied to CertiKOS, which makes it
challenging to use them for similar proofs that use CCAL as their verification toolkit. To address these issues,
we introduce 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌, a new mechanized methodology that provides proper thread abstraction to reason
about multithreaded programs in conjunction with CCAL. We also extend the previous CertiKOS proof with
𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌 to demonstrate its usability and expressiveness.
1. Introduction

Multithreading is a commonly employed technique to optimize
software performance by leveraging the computational capabilities of
hardware. However, ensuring the correctness of multithreaded soft-
ware presents significant challenges. Debugging software for correct-
ness is already demanding, and it becomes even more daunting in
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concurrency-related scenarios, such as multithreading. The potential
execution interleavings makes exhaustive testing impractical, and iden-
tifying and reproducing bugs is particularly challenging without precise
knowledge of the interleaving order. Formal verification offers a com-
pelling solution by providing assurance that software complies with its
specifications, covering all possible interleaving cases. Consequently,
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Fig. 1. Top-level Theorem.
we strongly advocate for the use of a verified multithreaded library
as the foundation for building trusted threaded programs that fully
harness the underlying hardware resources.

Nevertheless, verifying large-scale multithreaded libraries demands
significant effort, since interactions among multiple instances within
the program amplify its complexity. Additionally, the verification pro-
cess must include verified compilation to ensure consistency between
the verified program and the code running on the machine. To ad-
dress these challenges, prior research has explored modular and com-
positional reasoning in various contexts [1–12], including concur-
rency. Among these approaches, Certified Concurrent Abstraction Lay-
ers (CCAL) by the CertiKOS team stands out. CCAL employs a lay-
ered approach, replacing lower-level implementations with abstract
machines in higher layers. This compositional method has success-
fully verified large-scale software like CertiKOS. However, CCAL does
not completely address another challenge: how to offer a thread ab-
straction when creating certified specifications tailored to application
programmers while still accommodating essential features found in
multithreaded libraries. Some operating systems, like CertiKOS, depend
on dynamic information to allocate resources (e.g., memory pages) for
each thread when it is created. These dynamic behaviors are crucial for
ensuring safe and efficient resource management.

Fig. 1 illustrates the typical structure of thread libraries. This struc-
ture involves managing the view change in thread abstraction, where the
execution environment model is adjusted. These libraries vary in their
implementations based on their underlying models and intended fea-
tures. However, a common necessity in these libraries is the inclusion
of software schedulers (e.g., thread spawn, yield, sleep, and wake-up).
In the absence of a scheduler in the lower parts (up to view:per-CPU),
all threads on one CPU can be treated as a single program, managed
by lower-level software that provides essential system services (e.g.,
spinlocks and memory management), without considering multithread-
ing. On the other hand, introducing a software scheduler alters how a
program or system component interacts with the rest of the system.
With the introduction of software schedulers, a kernel program may
be concurrently invoked on behalf of multiple threads due to potential
context switches. It is possible to provide a thread-local interface for
this part, necessitating accounting for the behaviors of other threads
as an abstract environment isolated from the current thread under
verification. This approach avoids retaining all concrete details of
those evaluations as done in the lower parts. Managing the connection
2

between these two different views requires proper machine models,
program modules, concurrent contexts, and contextual refinements.
These are aspects that previous CCAL could not address adequately.

Hence, we introduce 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌 as a solution to overcome CCAL’s
limitations by addressing complexity at its source through several meth-
ods. Firstly, 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌 defines multiple intermediate machine models
that handle multiple thread scheduling primitives as built-in language-
level syntax and semantics. This decouples thread scheduling-related
primitives from other operations. Additionally, the introduced machine
models can be parameterized by different numbers of concrete and
environmental (abstract) instances. These models encompass scenar-
ios ranging from programs containing all threads for each CPU in
their configuration to those with only a partial set of threads, in-
cluding the case of a single-threaded program. Secondly, 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌
provides generic layer templates for these machine models. These
templates serve as abstract layers with defined types that can be applied
across various machine models. Depending on the verification target,
users can instantiate the generic layer template with any layers that
meet minimum conditions, thereby enhancing flexibility in our frame-
work. This approach achieves two objectives. It maintains consistency
with CCAL by establishing parameterized certified states and transi-
tions for the machine model with a layer definition. It also empowers
users to streamline proofs using the templates, reducing the effort
required for thread abstraction. Thirdly, 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌 offers contextual re-
finement proof templates between machine models and their associated
layer templates. This feature allows users to construct program-specific
proofs based on the proofs already provided by 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌. Lastly,
𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌 extends CompCertX to integrate the thread-local interface
with the verified compiler. It handles dynamically initialized thread
states correctly and preserves thread isolation properties.

Our thread abstraction methodology offers unique features that
make it suitable for verifying large concurrent systems. Firstly, our
multithreaded machine semantics are generic and can be applied to any
software that meets specific conditions, such as using certain primitives
like yield and sleep for thread context switching. This flexibility allows it
to be used with a wide range of programs, especially those compatible
with CCAL. Secondly, the library can be seamlessly linked with the
Assembly model for CompCertX, establishing a complete formal con-
nection between C and Assembly code while providing data abstraction
for detailed memory representation. This connectivity holds regardless
of the module’s complexity or level. Lastly, our thread abstraction can
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handle complex dependencies among multiple data structures in large
concurrent programs. This includes dependencies between shared and
private objects, with reasonable restrictions. To illustrate the usabil-
ity and expressiveness of our framework, we extend CertiKOS with
𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌. As part of our case study, we demonstrate the mutual ex-
clusiveness of multiple threads’ private data in the system. This implies
that private data remains isolated from other threads. For instance, our
thread abstraction proof automatically ensures the mutual exclusive-
ness of dynamically allocated memory pages through two-level page
allocation tables. This ensures that each thread cannot directly access
the private data of other threads in their private memories.

In conclusion, this paper makes the following contributions:

• We introduce a thread abstraction framework centered around a
generic thread configuration. This framework is tailored for the
x86 machine and supports cooperative-style scheduling functions
like yield and sleep. It allows for dynamic resource allocation and
exhibits the versatility to be applied in multiple programs.

• As part of the proposed framework, we present machine models
that establish a connection between a scheduler’s implementation
and an abstract thread pool semantics.

• We integrate these frameworks with the generic machine model
of CompCertX, a variant of CompCert, and demonstrate how to
utilize the framework for large-scale program verification.

• We offer guidelines for users, distinguishing between the aspects
that the framework automatically guarantees and those that users
must adhere to and ensure.

• We provide an evaluation of our framework, including statistics
on the lines of code within our framework, the lines of code for
our case study, and valuable lessons learned.

The thread abstraction framework introduced here is referred to as
𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌.

The remainder of this article is organized as follows. Section 2
presents the overall idea of 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌. Sections Section 3, 4, and 5
show all the steps in 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌 by presenting formal rules, proofs,
and precise explanations about the parts that users have to provide to
use 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌. Section 6 provides an example demonstrating how to
enable 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌, and Section 7 discusses proof efforts, our experience,
and the current limitations. Related work is discussed in Section 8,
and Section 9 concludes our paper. Furthermore, the complete proof is
accessible at https://zenodo.org/record/8312502, which is an identical
version presented in a user-friendly artifact page at https://certikos.
github.io/certikos-artifact/.

2. Overview

2.1. Certified concurrent abstraction layers

Certified Concurrent Abstraction Layers (CCAL) [10] is a toolkit
explicitly designed for verifying concurrent programs written in C and
assembly. Although our work, 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌, is an extension and a sub-
component of CCAL, for simplicity and clarity, we will treat 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌
as a distinct entity. CCAL has proven successful in various software
formal verification projects [13–16]. With the CCAL toolkit, users can
effectively dissect large concurrent programs into smaller, manageable
components and verify each component individually. After each piece is
verified, they can be assembled to establish a top-level correctness the-
orem for the entire program. This modular approach empowers users
to tackle the challenges presented by complex concurrent programs. In
this section, we offer a concise overview of CCAL and its remarkable
capabilities.

Overview. In CCAL, all layers utilize a state transition machine
parameterized with the common underlying machine model LAsm, an
3

extension of CompCert’s machine model. To simplify, let us discuss
how CCAL operates without delving into the details of LAsm. The
primary goal of CCAL is to decompose the verification target ag-
gressively, linearize dependencies between components, and introduce
more abstracted layers by substituting low-level implementations with
high-level specifications supported by formal proofs. Proofs within
CCAL are predicates that span two layers linked by a refinement
relation (𝑅). These layers include a participant ID, an environmental
context, a program module denoted as 𝙼𝚑𝚒𝚐𝚑 implementing the overlay
𝐿𝚑𝚒𝚐𝚑, and an underlay referred to as 𝐿𝚕𝚘𝚠. These proofs can be
represented as ‘‘ 𝐿𝚕𝚘𝚠[𝑖𝑑, 𝜀𝑙𝑜𝑤] ⊢𝑅 𝙼𝚑𝚒𝚐𝚑 ∶ 𝐿𝚑𝚒𝚐𝚑[𝑖𝑑, 𝜀ℎ𝑖𝑔ℎ].’’ This rep-
resentation encapsulates several key concepts. First, the participant ID
links to a specific instance identified by 𝑖𝑑 within concurrent programs,
which may correspond to different aspects based on the granularity
of concurrency, such as a CPU ID or thread ID. The environmental
context (𝜀) encompasses the abstracted behaviors of other instances
within concurrent programs. By following these approaches, layers
in CCAL contain a mechanized proof object, typically implemented
in Coq. This enables CCAL to ensure that 𝐿𝚑𝚒𝚐𝚑[𝑖𝑑, 𝜀ℎ𝑖𝑔ℎ] exhibits the
same observable behaviors as 𝙼𝚑𝚒𝚐𝚑 when applied over 𝐿𝚕𝚘𝚠[𝑖𝑑, 𝜀𝑙𝑜𝑤], as
specified by the refinement relation 𝑅.

States and transitions. A state transition machine consists of both state
and transition definitions. The state of each layer within CCAL is
characterized by a state composed of four key elements: a register
set (𝜌), a memory (𝑚), an abstract state (𝑎), and a global log (𝑙).

ransitions in these layers fall into two categories. The first category
nvolves transitions defined in CompCert, which resemble C/Assembly

instructions, including function calls. These transitions primarily mod-
ify 𝜌 and 𝑚 in the layer’s state, ensuring compilation correctness as
CCAL is constructed based on CompCert. The second category covers
primitive transitions. Layers define a set of primitives, represented as
a partial map from a primitive ID to its specification. These primitives
establish atomic single-step transition rules that mainly impact 𝑎 and 𝑙
in the state. They account for intricate interleavings with participants
like other CPUs and threads within the system. Within these primi-
tives, CCAL models all shared states using a single global log. This
log is updated by all transitions accessing shared states, whether by
the currently focused participant or other participants in the system.
The global log is pivotal in concurrent reasoning, as it preserves the
history of state updates, unlike a simplistic state structure (e.g., a record
type). This historical information is vital for proving and abstracting
concurrent properties, including safety, linearizability, and liveness.

To model interleaving with other participants in the global state, a
CCAL layer employs an environmental context. This context, a func-
tion taking the current shared state and a participant ID (e.g., CPU
ID or thread ID), determines how other participants may modify the
state before the current participant’s action. The transitions within
the environmental context are intentionally designed to be adaptable,
accommodating a wide range of scenarios. These transitions adhere to
the system’s invariants, as discussed in earlier works [5], with minimal
constraints imposed.

Verified compilation. It is clear that most programmers prefer not to
develop large-scale software using Assembly language. Fortunately,
CCAL is built on top of CompCertX [17], which is a variation of the
verified C compiler CompCert [18]. This platform provides a method-
ology that enables users to seamlessly integrate C and Assembly code
into their software development process. CompCertX also introduces a
C model, referred to as clightX, and an assembly model known as LAsm.
These models incorporate layer definitions as integral components of
their transition mechanisms. As a result, within the framework of
CCAL, software modules can be authored in either C or Assembly,
and C functions within these modules are automatically compiled into

Assembly code.

https://zenodo.org/record/8312502
https://certikos.github.io/certikos-artifact/
https://certikos.github.io/certikos-artifact/
https://certikos.github.io/certikos-artifact/
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Refinement proofs. With these definitions, layer building in CCAL ab-
stracts certain aspects of states and transitions within a given low-level
program module through contextual refinement proofs. More formally,
the module 𝙼𝚑𝚒𝚐𝚑 (or its compiled counterpart, denoted as

(

|𝙼𝚑𝚒𝚐𝚑|
)

),
hich operates on 𝐿𝚕𝚘𝚠[𝑖𝑑, 𝜀𝑙𝑜𝑤], transforms into 𝐿𝚑𝚒𝚐𝚑[𝑖𝑑, 𝜀ℎ𝑖𝑔ℎ] through

he abstraction of states and instructions. Low-level states and
ransitions–𝑚𝑙𝑜𝑤, 𝑎𝑙𝑜𝑤, and 𝑙𝑙𝑜𝑤–are abstracted and simplified into high-

level abstract states and primitives—𝑎ℎ𝑖𝑔ℎ and 𝑙ℎ𝑖𝑔ℎ. This process in-
volves concealing or simplifying certain aspects of the low-level mod-
ule’s behavior while ensuring that the high-level module behaves
correctly in relation to the specified abstractions. Contextual refine-
ment, the underlying technique of CCAL, demonstrates that these
abstractions are mathematically correct and is based on a refinement
relation (𝑅) between two states in the underlay and overlay. Defini-
tion 1 provides a formal definition of contextual refinement between
two layers while also taking verified compilation into account.

Definition 1 (Contextual Refinement). For any participant ID (𝑖𝑑),
context program (𝙲𝚝𝚡𝚝), oracles for two layers (𝜀𝑙𝑜𝑤 and 𝜀ℎ𝑖𝑔ℎ), the
following is true:

[[𝐿𝚕𝚘𝚠[𝑖𝑑, 𝜀𝑙𝑜𝑤]⟨
(

|𝙼𝚑𝚒𝚐𝚑 ⊕ 𝙲𝚝𝚡𝚝|
)

⟩]] ⊑𝑅

[[𝐿𝚑𝚒𝚐𝚑[𝑖𝑑, 𝜀ℎ𝑖𝑔ℎ]⟨(|𝙲𝚝𝚡𝚝|)⟩]]

The definition implies ‘‘Each state transition made by 𝐿𝚑𝚒𝚐𝚑[𝑖𝑑, 𝜀ℎ𝑖𝑔ℎ]
based on any context program Ctxt corresponds to (with the relation

) a sequence of state transitions by 𝐿𝚕𝚘𝚠[𝑖𝑑, 𝜀𝑙𝑜𝑤], which has the
context of the compilation result from both 𝙼𝚑𝚒𝚐𝚑 and 𝙲𝚝𝚡𝚝 together.’’

Limitations. CCAL has some limitations. First, it restricts dynamic al-
ocations in the data structures used by verified modules. While this
imitation reduces complexity in software verification, it also lim-
ts expressiveness. However, it simplifies the challenges of building
𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌 and provides a practical way to create a certified layer for

arge-scale programs. Secondly, CCAL relies on the simulation library
of CompCertX, but this restricts the expressiveness of CCAL layers.

sing the library enforces us to use a fixed participant ID for all
ayers, which poses a problem during layer construction. This limitation
ecomes evident when considering thread-local (single thread-focused)
ertified interfaces, which are crucial for system software like operating
ystems.

Operating systems like CertiKOS initially share kernel modules
among all CPU threads, including memory and thread management
services. During this setup, CCAL uses a single participant (CPU) for
its layers, with concurrency abstractions to model interactions with
other CPUs. However, when introducing threads and a software sched-
uler, isolating each thread becomes crucial. Without this isolation,
verifying one thread would require considering all the details and
implementations of threads on the same CPU (associated with the same
participant ID of the layer). To address this, CCAL introduces thread
abstraction for certain system software. This task is complex because it
involves dividing a single shared state among all threads into multiple
states (e.g., splitting shared registers based on CPU or thread IDs).
Additionally, the proof relies on intricate details of CompCertX machine
models (LAsm), and the abstraction must handle initial states of all
threads, even those dynamically determined based on parent executions
and user parameters, while maintaining thread isolation. In conclusion,
CCAL and its machine model, LAsm, do not adequately address these
challenges, highlighting the need for efficient methods and tools to
handle these complexities effectively.

2.2. Thread abstraction in a Nutshell

To overcome CCAL’s limitations, we integrate it with 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌,
framework that allows us to adjust the granularity of participant
4

Ds for each layer as needed. This involves abstracting states and d
multithreading-related primitives, including scheduling. We demon-
strate its utility with CertiKOS to showcase its enhancement of verified
software developed using CCAL. Fig. 2 outlines the process of con-
structing a certified thread-local layer interface using both CCAL and
𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌, with a focus on establishing contextual refinement between
𝙼𝐴𝑃𝐼 on 𝐿𝚂𝙷𝙸𝙼[𝑐𝑖𝑑, 𝜀𝑆𝐻𝐼𝑀 ] and the top-level layer 𝐿𝙰𝙿𝙸[𝑡𝑖𝑑, 𝜀𝐴𝑃𝐼 ]. This
igure also provides a detailed perspective akin to Fig. 1. While CCAL
orms the foundation for most of the layer construction, it becomes
ntricate when introducing threads. To address this, we introduce two
ayers, 𝙲𝚂𝚌𝚑𝚎𝚍 and 𝚃𝚂𝚌𝚑𝚎𝚍, each parameterized by different participant
Ds: a CPU ID for one and a thread ID for the other. 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌 plays a
ivotal role in refining the interaction between these layers, abstracting
he communication among threads. We call this essential abstraction
ithin 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌 view change.

To enable CCAL and 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌 to construct a certified thread-local
ayer interface with the proper view change, several steps are involved.
nitially, it entails the creation of a certified CPU-local layer interface,
tilizing 𝐿𝚂𝙷𝙸𝙼[𝑐𝑖𝑑, 𝜀𝑆𝐻𝐼𝑀 ]. These layers typically encompass modules
ssential for building a software scheduler, including components like
pinlocks and memory management modules.

Once the software scheduler is introduced and abstracted into a set
f primitives (e.g., thread yield, sleep, wake-up, and create), 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌
an be applied to initiate a ‘‘view change.’’ In the diagram, 𝙲𝚂𝚌𝚑𝚎𝚍 initi-
tes the view change, while 𝚃𝚂𝚌𝚑𝚎𝚍 completes it. Their primary tasks in-
lude: (1) building a machine model capable of reusing the CompCertX
ompiler while allowing for dynamic thread initial states (HAsm), (2)
efining concrete CPU-local and thread-local layers that can be for-
ally linked with the appropriate environmental contexts, represented

y 𝜀𝙲𝚂𝚌𝚑𝚎𝚍𝑐𝑖𝑑 and 𝜀𝚃𝚂𝚌𝚑𝚎𝚍𝑡𝑖𝑑 , respectively, and (3) demonstrating contextual
efinement proofs between layers running on their respective machine
odels. These tasks are intricate and involve software-specific chal-

enges. To address these complexities, 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌 employs abstractions
nd modular solutions to enhance maintainability, reusability, and
enerality.

First, 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌 introduces a thread configuration that defines the
bstract environment in which the thread-local interface of the target
oftware operates. This configuration includes details like the maximum
umber of threads, encompassing both active and available threads, the
PU’s main thread (which serves as the parent of all CPU threads), and
imilar parameters. This approach allows 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌 to abstract away
rom specific hardware or software configurations, making our proofs
ore adaptable and independent of such specifics.

Second, 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌 introduces an intermediate machine model
MTAsm) and a layer definition (𝚃𝙻𝚒𝚗𝚔) that can connect with both
𝚂𝚌𝚑𝚎𝚍 on LAsm and 𝚃𝚂𝚌𝚑𝚎𝚍 on HAsm without excessive complexity.
he machine model performs two key functions: (1) it decomposes the
ingle state definition and transition rules in LAsm into multiple thread
tates and transitions for each thread, and (2) it abstracts the behaviors
f other threads, creating an environmental context for one thread to
onstruct a thread-local layer interface, ensuring appropriate dynamic
nitial states for each thread. The intermediate layer, 𝚃𝙻𝚒𝚗𝚔, includes a
et of primitives designed for use in MTAsm, while maintaining com-
atibility with both 𝙲𝚂𝚌𝚑𝚎𝚍 on LAsm and 𝚃𝚂𝚌𝚑𝚎𝚍 on HAsm. Although
his layered approach within 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌 may expand the size of proofs,
t effectively breaks down complex problems into more manageable
omponents. This approach enhances maintainability and reusability
y solving these components separately.

Third, we have developed a contextual refinement template to
llustrate the refinement process between multiple layers and their
achine models within 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌. This template serves two important
urposes: (1) it addresses the challenge of increased proof size in
𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌 due to the multiple steps involved in the process, and (2) it
llows us to employ 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌 and portions of its proofs across various
arget software. Initially, we demonstrate contextual refinements using

minimal invariant that each step (each machine model and layer

epicted in 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌) must rely on. This is done without considering
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Fig. 2. 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌 structure.
program-specific definitions, such as a list of primitives dependent on
the program and memory accessors defining how a thread accesses
memory. Subsequently, we fill in the abstracted parts of the proof
template with program-specific definitions. However, it is important to
note that this approach relies on specific requirements: (1) 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌

assumes the existence of two scheduling primitives–yield and sleep–
that transfer control to another thread within the same CPU, (2) thread
creation must provide a dynamic initial state for its children, deter-
mined during runtime, and (3) threads within the target software
must not engage in dynamic memory allocation, adhering to CCAL’s
restrictions. While this method still necessitates multiple proofs to
tailor these proof templates to specific software and machine models, it
renders several critical proofs in 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌 generic and reusable. This
significantly enhances its practicality and utility.

In summary, we present 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌, a thread abstraction framework
that offers the properties outlined in Definition 2. The framework is
applicable to a range of software when the software meets a set of
reasonable assumptions and requirements outlined in later sections. In
the subsequent sections, we delve into each component depicted in
Fig. 2, providing comprehensive insights into how we structure this
thread abstraction and how users can leverage the framework for their
specific target software.

Definition 2 (Thread Abstraction). For any CPU ID (𝑖𝑑), thread ID (𝑡𝑖𝑑),
context program (𝙿), oracles for two layers (𝜀𝙲𝚂𝚌𝚑𝚎𝚍𝑐𝑖𝑑 and 𝜀𝚃𝚂𝚌𝚑𝚎𝚍𝑡𝑖𝑑 ), the
following is true:

[[𝙲𝚂𝚌𝚑𝚎𝚍[𝑐𝑖𝑑, 𝜀𝙲𝚂𝚌𝚑𝚎𝚍𝑐𝑖𝑑 ]⟨(|𝙿|)⟩]]LAsm ⊑𝑅𝑙𝑖𝑛𝑘

[[𝚃𝚂𝚌𝚑𝚎𝚍[𝑡𝑖𝑑, 𝜀𝚃𝚂𝚌𝚑𝚎𝚍𝑡𝑖𝑑 ]⟨(|𝙿|)⟩]]HAsm

In this definition, 𝙲𝚂𝚌𝚑𝚎𝚍[𝑐𝑖𝑑, 𝜀𝙲𝚂𝚌𝚑𝚎𝚍𝑐𝑖𝑑 ] is the top layer interface of
CPU modules with a machine model for a single CPU, LAsm, and
𝚃𝚂𝚌𝚑𝚎𝚍[𝑡𝑖𝑑, 𝜀𝚃𝚂𝚌𝚑𝚎𝚍𝑡𝑖𝑑 ] is the bottom layer interface of thread modules with
a machine model for a single thread, HAsm.
5

3. Bottom level interface and machine model: 𝙲𝚂𝚌𝚑𝚎𝚍 with 𝐋𝐀𝐬𝐦

The 𝙲𝚂𝚌𝚑𝚎𝚍[𝑐𝑖𝑑, 𝜀𝙲𝚂𝚌𝚑𝚎𝚍𝑐𝑖𝑑 ] is a CPU-specific layer interface in
𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌 designed to work within the LAsm, which is the machine
model used in CompCertX. This layer is tailored to a single CPU and
treats all other CPUs in the system as part of the environment. As
a result, it provides an isolated and simplified state and evaluation
rules for a single CPU in a multicore environment, leveraging CCAL’s
concurrency abstractions. However, in cases where multiple threads
execute on the same CPU, they still share various aspects of their states,
including registers, memory, and abstract states. Additionally, this layer
incorporates a software scheduler, with scheduler-related primitives
that are vital for managing active threads on the CPU. While the specific
implementations of these primitives may vary across different operating
systems, they share a common purpose in facilitating context switching
during the evaluation process.

To accommodate various implementations across different types of
operating systems, 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌 adopts a flexible approach by incorporat-
ing a placeholder within the layer. This placeholder can be customized
with diverse abstract states and primitives. As outlined in Section 2,
this strategy is designed to break down the complexities of thread
abstraction into smaller, more manageable components. This, in turn,
simplifies the development process and promotes the reuse of crucial
proofs within 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌 for multiple target software systems. Subse-
quently, users have the liberty to introduce their own implementations
to concretize this layer according to their specific needs. For instance,
users can integrate hypervisor management modules, encompassing
states and primitives, to instantiate 𝙲𝚂𝚌𝚑𝚎𝚍 with custom definitions
tailored to their target software. In Section 6, we illustrate how 𝙲𝚂𝚌𝚑𝚎𝚍

interfaces with the concrete layer definition in CCAL.
However, creating a versatile framework for the verification of

multiple targets necessitates making several generic assumptions that
can encompass the diverse targets we aim to address. One crucial
assumption within 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌 concerning 𝙲𝚂𝚌𝚑𝚎𝚍 revolves around the
presence of software scheduler primitives. This assumption is funda-
mental since effectively employing the concept of threads is impossible
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Fig. 3. Yield Rule and initial State in 𝙲𝚂𝚌𝚑𝚎𝚍 with CPU-local Layer Interfaces.
Fig. 4. Evaluation on 𝙲𝚂𝚌𝚑𝚎𝚍 with LAsm.
in the absence of a software scheduler. 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌 adopts the assumption
that 𝙲𝚂𝚌𝚑𝚎𝚍 incorporates two fundamental scheduling primitives: yield
and sleep. Formally, this assumption is expressed as: ‘‘(𝑦𝑖𝑒𝑙𝑑func, _) ∈
𝙲𝚂𝚌𝚑𝚎𝚍[𝑐𝑖𝑑, 𝜀𝙲𝚂𝚌𝚑𝚎𝚍𝑐𝑖𝑑 ] and (𝑠𝑙𝑒𝑒𝑝func, _) ∈ 𝙲𝚂𝚌𝚑𝚎𝚍[𝑐𝑖𝑑, 𝜀𝙲𝚂𝚌𝚑𝚎𝚍𝑐𝑖𝑑 ].’’ Both of
these primitives serve the purpose of determining the next thread to
be scheduled, initiating a context switch, and updating the identifier of
the currently running thread within the system.

Fig. 3 illustrates the 𝚢𝚒𝚎𝚕𝚍 specification in the 𝙲𝚂𝚌𝚑𝚎𝚍 layer. This
specification relates input and output states, focusing on a single CPU
(𝑐𝑖𝑑), while considering the environmental context (𝜀𝙲𝚂𝚌𝚑𝚎𝚍𝑐𝑖𝑑 ) to account
for other CPUs in the system. The state definition comprises two
elements: the local CPU state (𝑙𝑠𝑡) and a global state (𝑙). The local state
(𝑙𝑠𝑡) includes CPU-specific data like register values, local memory, and
an abstract datum. The 𝚢𝚒𝚎𝚕𝚍 specification updates the shared state
by querying the environmental context (𝜀𝙲𝚂𝚌𝚑𝚎𝚍𝑐𝑖𝑑 𝑙) to adjust scheduling
information and appends a 𝚢𝚒𝚎𝚕𝚍 event. Furthermore, it updates the lo-
cal CPU state. This transition involves preserving old register values by
adjusting the abstract datum (𝑎𝑑𝑡′ = 𝑎𝑑𝑡∕[𝑎𝑑𝑡.𝑘𝑐𝑡𝑥𝑡 ∶= 𝑎𝑑𝑡.𝑘𝑐𝑡𝑥𝑡∕[𝑐𝑖𝑑 =
𝜌]]). This action stores the register values (𝜌) of CPU 𝑐𝑖𝑑 in the kernel
context pool (𝑎𝑑𝑡.𝑘𝑐𝑡𝑥𝑡) of its local abstract state (𝑎𝑑𝑡). Subsequently,
CPU 𝑐𝑖𝑑′ is scheduled, and its context is reinstated in the registers
for execution. This process effectively changes the currently executing
thread on the CPU while appropriately preserving and restoring their
execution contexts. However, this alone does not offer thread-local
interfaces that exclusively focus on a single thread’s execution without
exposing extraneous details of other threads sharing the CPU.

Fig. 4 shows an example with three threads on LAsm, managed
by 𝙲𝚂𝚌𝚑𝚎𝚍[𝑐𝑖𝑑, 𝜀𝙲𝚂𝚌𝚑𝚎𝚍𝑐𝑖𝑑 ]. Initially, thread 1 is the main CPU thread,
which spawns thread 2, and then thread 2 spawns thread 3. Despite
having multiple threads, the machine’s evaluation does not fully isolate
each thread. It primarily changes the machine’s state, which includes
shared elements like registers. In this machine, even though multiple
threads exist, the scheduling primitives’ evaluation does not isolate
one thread from others. Instead, it modifies the machine’s state. The
evaluation starts from a common initial state shared by all threads.
Fig. 3 explains how the global initial state is set, involving memory,
abstract state, and initial register values. It utilizes the function pointer
of the initial thread’s main function in the CPU. Later sections will
delve into achieving thread abstraction at this level without altering
semantics.

Note that transition rules for other primitives that will be later filled
out for the placeholders in 𝙲𝚂𝚌𝚑𝚎𝚍[𝑐𝑖𝑑, 𝜀𝙲𝚂𝚌𝚑𝚎𝚍𝑐𝑖𝑑 ] are also relations on two
states: from an initial state to a result state of each transition, as follows:

𝙲𝚂𝚌𝚑𝚎𝚍[𝑐𝑖𝑑, 𝜀𝙲𝚂𝚌𝚑𝚎𝚍𝑐𝑖𝑑 ](𝑓𝑖𝑑) ⊢LAsm
𝜎𝑖𝑑 (𝑎𝑟𝑔𝑠, 𝑙𝑠𝑡, 𝑙) ⇒ (𝑟𝑒𝑠 ∪ {}, 𝑙𝑠𝑡′, 𝑙′).

Here, 𝜎𝑖𝑑 denotes the specification of primitive 𝑓𝑖𝑑, 𝑎𝑟𝑔𝑠 is the list
of arguments for the primitive call, and 𝑟𝑒𝑠∪{} defines the return type
6

of the primitive call. Figs. 3 and 4 do not include examples for those
primitives since they are not the main focus of our work.

4. Thread abstraction

𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌 strives to create an isolated abstract machine for in-
dividual threads while accounting for their interleaved interactions
with others. These interactions are visible to all threads as shared
transition rules and states within 𝙲𝚂𝚌𝚑𝚎𝚍 on LAsm. We break the prob-
lem into smaller components and address them separately. It follows
the method to design a state transition-based machine model in the
layered manner with CCAL, allowing customization by specifying a
participant, environmental context, and layer. This section provides an
in-depth explanation of these machine models and their parameterized
definitions.

4.1. Multithreaded machine model: MTAsm

As the first step, 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌 introduces MTAsm, a multithreaded
machine model, and the associated layer 𝚃𝙻𝚒𝚗𝚔. The primary purpose
of it is to divide the single state and sequential evaluation for all
CPU threads into multiple thread-local states and pseudo-concurrent
evaluations. It ensures thread isolation, and each maintains its registers.
Fig. 5 illustrates thread evaluation on MTAsm in comparison to that on
LAsm. The top three timelines depict the isolated evaluation of three
threads on MTAsm, while the bottom timeline shows thread evaluation
sharing states on LAsm. In the top three timelines, the only way that
each thread explicitly interacts with others is via scheduling primitives.
The scheduling transition (𝚢𝚒𝚎𝚕𝚍 in the figure) changes the execut-
ing thread’s ID and logs the event. Introducing MTAsm also brings
the challenge of where to define scheduling primitives, which affect
multiple threads. Instead of placing them in 𝚃𝙻𝚒𝚗𝚔, MTAsm includes
rules for two scheduling primitives within the machine model. It allows
𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌 to provide a multi-threaded interface while maintaining
isolation between each thread’s evaluation and effectively managing
scheduling primitives.

However, simply splitting the CPU state and introducing a new
layer definition is insufficient for MTAsm to handle dynamic thread
initialization with dynamic resource allocation by each thread’s parent.
Each thread in the model cannot determine the initial local state infor-
mation, such as the maximum resource capacity and function pointer
of each thread when it is spawned, since its initialized state is decided
by its parent thread, which dynamically allocates the child’s resources
and function pointer. However, if each thread is isolated from others,
parents cannot directly initialize the states of their children when they
are spawned, as even a parent thread cannot directly update the state
of its child. To address it, MTAsm implements a lazy initialization
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Fig. 5. Evaluation on 𝚃𝙻𝚒𝚗𝚔 with MTAsm.
Fig. 6. Single Thread Evaluation on 𝚃𝙻𝚒𝚗𝚔 with MTAsm.
semantics that defers updating a thread’s initial state until it first
reaches its evaluation control, even after it has been spawned.

Fig. 5 illustrates this process. In the figure, Thread 2 begins its initial
evaluation after Thread 1 spawns it and passes control to Thread 2.
During the spawn, Thread 1 initializes Thread 2’s private-state infor-
mation, such as user context and kernel context, based on dynamically
determined information (e.g., arguments of the thread spawn function).
Instead of direct modification, the child thread (Thread 2 in this case)
initializes itself when it first starts running with the initial log. This
log contains a sequence of a spawn event and a yield event generated
by Thread 1 in the figure. Through these steps, MTAsm provides
a multithreaded interface that isolates each thread’s evaluation and
handles dynamic thread initial states.

The discussed interface addresses several thread abstraction chal-
lenges but remains incomplete. It still exposes concrete evaluations
of entire threads in the system. The next step in achieving proper
thread abstraction is to isolate the focused thread’s evaluation from
others. To achieve this, MTAsm utilizes a parameterized environmental
configuration (Fig. 6). Unlike a fixed thread set configuration and en-
vironmental context in 𝙲𝚂𝚌𝚑𝚎𝚍 on LAsm, MTAsm can adapt to different
sets of threads within the same CPU. 𝚃𝙻𝚒𝚗𝚔 handles the environmental
context for abstracted threads. For example, in Fig. 6, we see an
evaluation of MTAsm with 𝚃𝙻𝚒𝚗𝚔 parameterized by a singleton thread
2 set and an environmental context that abstracts threads 1 and 3.
Thread 2 initializes its state using a spawn event and transitions from
thread 1, its parent. Then, it continues the evaluation, consulting the
environmental context for scheduling primitives. This approach allows
𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌 to provide thread abstraction and create a thread-local layer
interface. However, it is essential for us to ensure this environmental
context accurately represents the underlying evaluation. The following
sections provide formal definitions and properties to demonstrate this
rigorously.

4.1.1. Multithreaded environment configuration
Fig. 7 outlines essential variables, data types, and functions in

𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌. Within 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌, there are two states:  for individual
thread states and  for shared state across all threads, captured as a
shared log . This log records all shared object operations. Four events
are introduced in : 𝖸𝖨𝖤𝖫𝖣 and 𝖲𝖫𝖤𝖤𝖯 corresponding to 𝚢𝚒𝚎𝚕𝚍 and
𝚜𝚕𝚎𝚎𝚙, and 𝖸𝖡𝖠𝖢𝖪, a logical primitive. 𝖯𝖱𝖨𝖬 represents all primitive
calls accessing shared objects by any thread, whether on the same or
different CPUs. This event logs argument information (𝑎𝑟𝑔𝑠) and a state
7

snapshot (𝑠𝑛𝑎𝑝) when invoked. Examples in CertiKOS include thread
creation and page allocation primitives.

Additionally, 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌 defines thread configuration variables, in-
cluding 𝐷thrd for all CPU threads and an 𝑡𝑖𝑑m on the same CPU. The
initial thread, 𝑡𝑖𝑑m, initializes the system state and does not need
distinguishing from others. 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌 assumes suitable initial values
for private and shared states (𝐼(𝑚), 𝐼(𝑛𝑚), and 𝐼 ), plus an initial log
for each thread (𝐼 ). Private states for the initial thread and others
differ to represent dynamic initial state allocation. The initial thread’s
state is static, determined at system boot, while others’ private states
dynamically adjust during evaluation based on the shared log. For
example, the initial log for thread 1 in Fig. 6 is empty, whereas thread
2’s initial log contains events from thread 1, including the creation of
thread 2, yield, and yield back events that shift control from thread 1
to thread 2.

Fig. 7 also introduces important auxiliary functions within
𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌. The 𝗎𝗉𝖽𝖺𝗍𝖾 function calculates the current shared state based
on the log, where all inter-thread operations are recorded as events.
Functions like 𝖨𝖯𝖣𝗍𝗁𝗋𝖽 and 𝖨𝖯𝖢𝗍𝗁𝗋𝖽 determine and assign private state
and register values, facilitating dynamic thread spawning. 𝖲𝖳𝖢𝗁𝖾𝖼𝗄

ensures thread validity during evaluations, especially when evaluating
𝚢𝚒𝚎𝚕𝚍. Additionally, 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌 offers a function (𝖤𝗇𝗏𝖰) for querying an
environmental context based on the log. Formal rules in later sections
demonstrate how these functions are utilized in various machine mod-
els within 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌. 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌 also incorporates essential properties
pertaining to these definitions, variables, and auxiliary functions, which
are crucial for formal thread abstraction proofs. For instance, it enforces
constraints on a thread set (e.g., 𝑡𝑖𝑑m ∈ 𝐷thrd) and an initial log (e.g.,
𝐼 (𝑝𝑖𝑑) must always contain a corresponding thread spawn event for
𝑝𝑖𝑑). These properties serve as the foundation for defining intermediate
machine models and introducing a machine model for thread-local
interfaces, as discussed later.

4.1.2. Syntax and semantics
This section presents an intermediate machine model, MTAsm, pa-

rameterized by an intermediate layer definition, 𝚃𝙻𝚒𝚗𝚔. Formally, the
MTAsm state is defined as a tuple as follows:

𝑠𝑡MTAsm ∶=
((𝑐𝑢𝑟_𝑡𝑖𝑑 ∶ Z), {(𝑡𝑖𝑑 ∶ Z) ⇀ (𝑙𝑠𝑡𝑡ℎ𝑟𝑑 ∶ )}, (𝑙𝑡ℎ𝑟𝑑 ∶ )) ,

of which the first element is the currently running thread identifier,

({𝑡𝑖𝑑 ⇀ 𝑙𝑠𝑡𝑡ℎ𝑟𝑑}, 𝑙𝑡ℎ𝑟𝑑 ), which corresponds to (𝑙𝑠𝑡, 𝑙) in LAsm, are a set
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Fig. 7. Basic Definitions of Thread Abstraction Framework.
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f thread private states and a log shared by all threads. The layer
eclaration, 𝚃𝙻𝚒𝚗𝚔, is a template layer definition that primitives are de-
ined with abstract signatures with placeholders, and users can fill out
laceholders later. MTAsm definitions and proofs do not take care about
he details of the layer, but the minimum requirement is necessary to
rovide the formal template and linking proofs (in Definition 3).

efinition 3 (Primitive Domain in 𝚃𝙻𝚒𝚗𝚔 and 𝙲𝚂𝚌𝚑𝚎𝚍). For any primitive
ID (𝑓𝑖𝑑) which is neither yield nor sleep primitives (𝑓𝑖𝑑 ≠ 𝚢𝚒𝚎𝚕𝚍∧𝑓𝑖𝑑 ≠
𝚕𝚎𝚎𝚙), the following should hold:

𝑓𝑖𝑑, _) ∈ 𝙲𝚂𝚌𝚑𝚎𝚍[_, _] ↔ (𝑓𝑖𝑑, _) ∈ 𝚃𝙻𝚒𝚗𝚔[_, _].

Definition 3 specifies that the 𝚃𝙻𝚒𝚗𝚔 layer includes a set of primi-
ives similar to the 𝙲𝚂𝚌𝚑𝚎𝚍 layer (except for two scheduling primitives).
owever, their specifications are defined on thread-local states rather

han CPU-local states. Specifically, the following expression represents
he specification:

𝚃𝙻𝚒𝚗𝚔[_, _](𝑓𝑖𝑑) ⊢_
𝜎𝑖𝑑p (𝑎𝑟𝑔𝑠, 𝑙𝑠𝑡𝑡𝑖𝑑 , 𝑙) ⇒ (𝑟𝑒𝑠 ∪ {}, 𝑙𝑠𝑡′𝑡𝑖𝑑 , 𝑙

′)

The specification gets the argument (𝑎𝑟𝑔𝑠), a local state of the
urrent thread 𝑡𝑖𝑑 (𝑙𝑠𝑡𝑡𝑖𝑑), and a global state (𝑙), and then returns the
esult of the evaluation (𝑟𝑒𝑠∪{}) as well as the updated state ((𝑙𝑠𝑡′𝑡𝑖𝑑 , 𝑙

′)).
On the other hand, two scheduling primitives that are not defined

n 𝚃𝙻𝚒𝚗𝚔, but in 𝙲𝚂𝚌𝚑𝚎𝚍, and their transitions are treated in a different
ay. MTAsm directly models two scheduling primitives as depicted in
ig. 8 includes the essential definitions to describe their semantics. The
irst definition concerns a thread’s state. In this machine model, which
akes an arbitrary thread set on the same CPU as a parameter, thread
tates on the same CPU are divided into three categories: ‘‘running’’
𝚁𝚄𝙽), ‘‘available’’ (𝙰𝚅𝙰𝙸𝙻), and ‘‘environment’’ (𝙴𝙽𝚅). The ‘‘running’’
tate denotes a thread actively executing and awaiting initialization.
he ‘‘available’’ state applies to a thread that may be spawned or
cheduled in the future but has not yet started execution. For instance,
n already spawned thread can have a 𝙰𝚅𝙰𝙸𝙻 state before its initial
valuation. The last category includes threads considered part of the
nvironment for the currently specified thread set, such as threads 1
nd 3 in the evaluation shown in Fig. 6.

With this definition, the complete state description of MTAsm con-
ists of a tuple of elements: a thread ID that is currently running, a
ollection of thread states, a set of private states, memory, and a log.
he set of private states serves as a partial map from a thread ID to its

solated private state, and all threads that are running and/or available
8

n a set of thread states have their own private state in the set of private s
tates. However, all threads that are indicated as environmental threads
n a set of thread states do not have their corresponding private states in
set of private states. A memory and a log are shared by all threads, but
e assume that the region accessed by each thread is mutually excluded

rom other regions owned by other threads. This is a limitation and
estriction of 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌, but it is necessary to simplify our 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌

ith the capability of handling our case study, CertiKOS. We plan to
xtend it to handle more general cases than the current version as
art of our future research direction. With these definitions, the figure
resents three evaluation rules of MTAsm: the yield, environment, and
ield back rules, assuming that the machine is parameterized with a
𝙻𝚒𝚗𝚔 layer and a thread set 𝐴 (a subset of 𝐷thrd). The primary rule
f a yield transition rule in MTAsm is to change the currently running
hread identifier of the machine state (from 𝑐𝑢𝑟𝑖𝑑 to 𝑐𝑢𝑟𝑖𝑑′ in the rule).
pecifically, the evaluation first calculates the currently running thread
y replying the shared log (𝑐𝑢𝑟𝑖𝑑 = 𝗀𝖾𝗍_𝗍𝗂𝖽(𝗎𝗉𝖽𝖺𝗍𝖾(𝐼 , log))), adds the
ield event into the shared log, and then recalculates the next scheduled
hread by replying the updated log (𝑐𝑢𝑟𝑖𝑑′ = 𝗀𝖾𝗍_𝗍𝗂𝖽(𝗎𝗉𝖽𝖺𝗍𝖾(𝐼 , log

′))).
Before triggering the yield transition, the rule verifies several essen-

ial state invariants. Firstly, it assumes that the most recent machine
valuation was neither a yield nor a sleep transition rule. This de-
ign choice is a result of how MTAsm handles transitions. Instead of
mmediately changing the currently running thread and commencing
he evaluation with the newly scheduled thread in a single combined
ield and sleep transition, MTAsm takes a stepwise approach. Initially,
t allows the current thread to relinquish control by merely altering the
hread ID responsible for the next scheduled thread. Subsequently, the
cheduled thread executes one of the two rules outlined in the figure:
he environment rule or the yield back rule, depending on whether the
cheduled thread is part of 𝐴. This design serves two primary purposes:
1) it enables the separate handling of dynamically initialized states for
ach thread during their initial scheduling, a task managed by the yield
ack rule, and (2) it clearly distinguishes the case where the scheduled
hread is not in 𝐴, addressed by the environment rule, from the case
here the thread is in 𝐴. Additionally, the transition rule checks various
roperties to ensure safety and alignment with the low-level machine
etails. For instance, it verifies whether the current thread (𝑐𝑢𝑟𝑖𝑑) is
valid running thread and whether the current program counter (PC)

orrectly indicates the yield function.
The environment rule specifies a transition for when the current

hread is not in the current thread set (𝑡𝑠𝑝[𝑐𝑢𝑟𝑖𝑑] = 𝙴𝙽𝚅). In this case,
valuations are conducted solely based on a global log (𝑙𝑜𝑔), employing
n environmental context query (𝖤𝗇𝗏𝖰). The yield back evaluation rule
s used to alter the thread state (𝚃𝚂) based on the current thread’s

tatus (𝑐𝑢𝑟𝑖𝑑). This rule comprises two cases: (1) when the thread is
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designated as a running thread (𝚁𝚄𝙽 𝜌), it indicates that the thread
has already been initialized and scheduled. Consequently, the rule only
modifies the program counter value, and (2) if the thread is marked as
𝙰𝚅𝙰𝙸𝙻, it indicates that the thread has been spawned but has not been
dispatched for evaluation yet. In this scenario, the appropriate thread
state is calculated using 𝖨𝖯𝖢𝗍𝗁𝗋𝖽. These rules correspond to a ‘‘YBACK’’
evaluation in Fig. 5.

In addition to these rules, MTAsm also encompasses other rules for
internal instructions like memory load and store, external primitive
calls (defined in 𝚃𝙻𝚒𝚗𝚔), and a sleep function call. However, these rules
closely resemble the evaluation rules in CompCertX [17] or the yield
transition rule presented in the figure, so we have omitted them here.
Fig. 8 also illustrates the initial state of MTAsm. The current thread
identifier is the init thread (𝑡𝑖𝑑m) of the system. The thread state pool
𝑡𝑠𝑝𝑖𝑛𝑖𝑡) includes proper values for 𝐏𝐂 and 𝐄𝐒𝐏 of the main thread but
olds 𝙰𝚅𝙰𝙸𝙻 or 𝙴𝙽𝚅 depending on the thread identifier and whether the
hread is in 𝐴 or not. The rule also assigns a suitable initial private
tate to each thread using 𝖨𝖯𝖣𝗍𝗁𝗋𝖽. With these features, we accurately
odel a machine capable of running multithreaded applications using

wo software scheduling primitives (yield and sleep). It isolates each
hread’s private state from others, handles dynamic initial states for
ach thread appropriately, and can be parameterized by a subset of
he available full thread set running on top of the CPU. The complete
efinition of MTAsm is accessible online [19].

.1.3. Refinement proof
𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌 establishes a formal connection between a context pro-

ram running on 𝙲𝚂𝚌𝚑𝚎𝚍[𝑐𝑖𝑑, 𝜀𝙲𝚂𝚌𝚑𝚎𝚍𝑐𝑖𝑑 ] with LAsm and the same context
rogram on 𝚃𝙻𝚒𝚗𝚔[𝐷thrd, 𝜀𝚃𝙻𝚒𝚗𝚔𝐷thrd

] with MTAsm. We employ a simulation
ibrary from CompCert [20] for this purpose. This connection relies on
arious details about states and primitive sets in both interfaces, includ-
ng abstract definitions (in Fig. 7) and two abstract layer declarations.
o establish this proof with minimal restrictions, 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌 introduces
9

n abstract relation 𝙰𝚋𝚜𝚁𝚎𝚕𝙲, consisting of two rules in Fig. 9, which
are dramatically simplified for the readability. First, the yield match
relation ensures that the yield evaluation rule in MTAsm corresponds
to 𝚢𝚒𝚎𝚕𝚍 in 𝙲𝚂𝚌𝚑𝚎𝚍[𝑐𝑖𝑑, 𝜀𝙲𝚂𝚌𝚑𝚎𝚍𝑐𝑖𝑑 ] based on the 𝑑𝑎𝑡𝑎(MTAsm,LAsm) re-
lation. Second, the primitive match relation states that all primitive call
transitions in 𝚃𝙻𝚒𝚗𝚔[𝐷thrd, 𝜀𝚃𝙻𝚒𝚗𝚔𝐷thrd

] with MTAsm correspond to primitive
all transitions in 𝙲𝚂𝚌𝚑𝚎𝚍[𝑐𝑖𝑑, 𝜀𝙲𝚂𝚌𝚑𝚎𝚍𝑐𝑖𝑑 ] with LAsm, defining a transitional
orward simulation property. Using these abstract relations, 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌
stablishes a contextual refinement property, as presented in Lemma 1.

emma 1. For any context program 𝙿, a CPU ID 𝑐𝑖𝑑, a full thread
et 𝐷thrd on the CPU, two template layer interfaces (𝙲𝚂𝚌𝚑𝚎𝚍 and 𝚃𝙻𝚒𝚗𝚔),
nvironmental contexts (𝜀𝙲𝚂𝚌𝚑𝚎𝚍𝑐𝑖𝑑 and 𝜀𝚃𝙻𝚒𝚗𝚔𝑡𝑖𝑑 ), and a refinement relation
(MTAsm,LAsm), the following holds:

[𝙲𝚂𝚌𝚑𝚎𝚍[𝑐𝑖𝑑, 𝜀𝙲𝚂𝚌𝚑𝚎𝚍𝑐𝑖𝑑 ]⟨𝙿⟩]]LAsm ⊑𝑅(MTAsm,LAsm)

[𝚃𝙻𝚒𝚗𝚔[𝐷thrd, 𝜀
𝚃𝙻𝚒𝚗𝚔
𝐷thrd

]⟨𝙿⟩]]
MTAsm

ith the assumption that two layers with two different machines
𝚃𝙻𝚒𝚗𝚔[𝐷thrd, 𝜀𝚃𝙻𝚒𝚗𝚔𝐷thrd

] ⊢MTAsm and 𝙲𝚂𝚌𝚑𝚎𝚍[𝑐𝑖𝑑, 𝜀𝙲𝚂𝚌𝚑𝚎𝚍𝑐𝑖𝑑 ] ⊢LAsm) satisfies the
elation 𝙰𝚋𝚜𝚁𝚎𝚕𝙲 and 𝑅(MTAsm,LAsm) includes 𝑑𝑎𝑡𝑎(MTAsm,LAsm) in it.

However, users need to provide 𝑑𝑎𝑡𝑎(MTAsm,LAsm) and evi-
ence of 𝙰𝚋𝚜𝚁𝚎𝚕𝙲 based on concrete definitions of abstract layers
𝙲𝚂𝚌𝚑𝚎𝚍[𝑐𝑖𝑑, 𝜀𝙲𝚂𝚌𝚑𝚎𝚍𝑐𝑖𝑑 ] and 𝚃𝙻𝚒𝚗𝚔[𝐷thrd, 𝜀𝚃𝙻𝚒𝚗𝚔𝐷thrd

]), which depend on the spe-
ific program being verified. While this task can be complex and time-
onsuming, 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌 offers essential templates for thread abstraction
nd refinement proofs. These templates, combined with user-provided
rogram-related definitions, enable 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌 to automatically gener-
te a contextual refinement lemma between two layer interfaces. In
ddition to Lemma 1, 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌 also provides the proof that establishes
connection between a program running with a full thread set and

he same program running with a specific thread and its environmen-
al context. The proof is shown in Fig. 6. It is an integral part of
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Fig. 9. Abstract Relation (𝙰𝚋𝚜𝚁𝚎𝚕𝙲).
Fig. 10. Single Thread Evaluation on 𝚃𝙻𝚒𝚗𝚔 with STAsm.
𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌’s thread abstraction, allowing it to hide local evaluations of
other threads in a higher layer interface (𝚃𝙻𝚒𝚗𝚔[𝑡𝑖𝑑, 𝜀𝚃𝙻𝚒𝚗𝚔𝑡𝑖𝑑 ]) while main-
taining a contextual refinement property with a lower layer interface
(𝚃𝙻𝚒𝚗𝚔[𝐷thrd, 𝜀𝚃𝙻𝚒𝚗𝚔𝐷thrd

]), as detailed in Lemma 2.

Lemma 2. For any context program 𝙿, a full thread set 𝐷thrd, a thread
identifier 𝑡𝑖𝑑, a template layer 𝚃𝙻𝚒𝚗𝚔, environmental contexts (𝜀𝚃𝙻𝚒𝚗𝚔𝑐𝑖𝑑 and
𝜀𝚃𝙻𝚒𝚗𝚔𝑡𝑖𝑑 ), and a refinement relation 𝑅(MTAsm,MTAsm), the following holds:

[[𝚃𝙻𝚒𝚗𝚔[𝐷thrd, 𝜀
𝚃𝙻𝚒𝚗𝚔
𝐷thrd

]⟨𝙿⟩]]
MTAsm

⊑𝑅(MTAsm,MTAsm)

[[𝚃𝙻𝚒𝚗𝚔[𝑡𝑖𝑑, 𝜀𝚃𝙻𝚒𝚗𝚔𝑡𝑖𝑑 ]⟨𝙿⟩]]MTAsm

The proof of Lemma 2 also includes various intermediate steps and
definitions, but users do not need to delve into these details. 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌
automatically ensures this property for any concrete layers and config-
urations meeting minimum requirements (Section 4.1.1). In summary,
𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌, MTAsm, and Lemmas 1 and 2 provide a thread-local layer
interface, isolating a thread from others. Definitions and proofs for
these lemmas are available online [21] and [22], respectively.

4.2. Single-threaded machine model: Overview

MTAsm already offers a template layer interface focusing on a single
thread and hiding others’ behavior, as seen in Lemma 2
(𝚃𝙻𝚒𝚗𝚔[𝑡𝑖𝑑, 𝜀𝚃𝙻𝚒𝚗𝚔𝑡𝑖𝑑 ] with MTAsm). However, this is not sufficient for
thread-local layer interfaces due to the incompatibility with CompCertX.
CompCertX requires atomic evaluation of each primitive call, including
𝚢𝚒𝚎𝚕𝚍. However, 𝚢𝚒𝚎𝚕𝚍 in MTAsm uses sequences of yield, environmen-
tal, and yield-back transition rules, which do not align with CompCertX.
To bridge this gap, 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌 introduces STAsm, an intermediate ma-
chine model with simplified scheduling transitions and adjusted state
definitions, ensuring compatibility with CompCertX for compilation
purposes.

STAsm simplifies scheduling transitions using zipping functions that
consolidate events between two key moments: the initiation of schedul-
ing primitive calls and when the callee regains control. Fig. 10 illus-
trates an example with STAsm based on this concept. The machine com-
mences evaluation with a dynamically allocated initial state computed
through 𝖨𝖯𝖣𝗍𝗁𝗋𝖽 and 𝖨𝖯𝖢𝗍𝗁𝗋𝖽 (in Fig. 7). It performs local transitions,
generating events as necessary. When Thread 2 invokes 𝚢𝚒𝚎𝚕𝚍, the
machine employs a zipping function for environmental context queries
until Thread 2 regains control. However, this relies on an assumption:
each thread must undergo at least one evaluation, and the entire
system generates a finite number of events (which may not necessarily
correspond to the number of steps, as multiple private steps may not
produce events).
10
4.2.1. Syntax and semantics
Fig. 11 provides a machine state definition, a zipping function,

and parts of evaluation rules of STAsm. It employs a state definition
with five components: thread identifier, register values, thread-local
state, memory, and a log, focusing solely on one thread. The 𝖤𝗇𝗏𝖹𝗂𝗉
function combines multiple environmental context queries until the
result matches the thread identifier, with a bounded query count (𝑛),
which can be customized for typical multithreaded program executions.
In STAsm, a 𝚢𝚒𝚎𝚕𝚍 call is abstracted into a single big-step transition.
This transition consists of three simultaneous actions: (1) updating the
log by appending 𝖸𝖨𝖤𝖫𝖣, (2) iteratively querying the environmental
context until control is returned to the thread, and (3) adding a yield-
back event to the log. This abstraction condenses several steps from
MTAsm (yield, environment, yield-back rules) into one. The initial state
of STAsm is tailored for single-threaded program execution. It contains
dynamically allocated values for the program counter and private state,
ensuring atomic representation of a yield transition initiated by a
specific thread, under reasonable assumptions. Detailed Coq definitions
for STAsm are accessible online [23].

4.2.2. Refinement proof
𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌 offers Lemma 3, with the full Coq definition available

online [24]. This lemma formally links program evaluations on STAsm
and MTAsm. While it relies on thread configurations (e.g., thread ID)
and a template layer definition (𝚃𝙻𝚒𝚗𝚔[𝑡𝑖𝑑, 𝜀𝚃𝙻𝚒𝚗𝚔𝑡𝑖𝑑 ]), it does not require
additional abstract properties like 𝙰𝚋𝚜𝚁𝚎𝚕𝙲. As a result, users can utilize
it without introducing extra concrete definitions, as both MTAsm and
STAsm share the same template layer definition, 𝚃𝙻𝚒𝚗𝚔.

Lemma 3. For any context program 𝙿, a thread 𝑡𝑖𝑑, a template layer
𝚃𝙻𝚒𝚗𝚔, an environmental context 𝜀𝚃𝙻𝚒𝚗𝚔𝑡𝑖𝑑 , and a refinement relation
𝑅(STAsm,MTAsm), the following holds:

[[𝚃𝙻𝚒𝚗𝚔[𝑡𝑖𝑑, 𝜀𝚃𝙻𝚒𝚗𝚔𝑡𝑖𝑑 ]⟨𝙿⟩]]MTAsm ⊑𝑅(STAsm,MTAsm)

[[𝚃𝙻𝚒𝚗𝚔[𝑡𝑖𝑑, 𝜀𝚃𝙻𝚒𝚗𝚔𝑡𝑖𝑑 ]⟨𝙿⟩]]STAsm

5. Top-level interface

5.1. 𝚃𝚂𝚌𝚑𝚎𝚍 With HAsm

As the final step in achieving thread abstraction and delivering a
thread-local layer interface, 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌 introduces HAsm, a machine
model tailored for thread-local layer interfaces. This addition is nec-
essary to bridge the gap between the machine model and transition
rules in STAsm and the form required to connect with CompCertX.
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Fig. 11. Parts of Evaluation Rules of STAsm.
Fig. 12. Evaluation on 𝚃𝚂𝚌𝚑𝚎𝚍 with HAsm.
HAsm is similar to LAsm but provides additional functionality that is
missing in LAsm, enabling the correct assignment of dynamic initial
states for individual threads. Moreover, HAsm shares the same machine
state and transition rules as LAsm, ensuring effortless integration with
the CompCertX compiler without altering the compilation process. This
makes HAsm a versatile toolkit for users to incorporate thread-local
functionalities into libraries, such as queuing locks and library call
dispatchers. Additionally, 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌 provides a template layer declara-
tion, 𝚃𝚂𝚌𝚑𝚎𝚍[𝑡𝑖𝑑, 𝜀𝚃𝚂𝚌𝚑𝚎𝚍𝑡𝑖𝑑 ], which serves as the bottom layer interface for
HAsm. Similar to the constraints of the 𝙲𝚂𝚌𝚑𝚎𝚍 layer, we rely on a few
restrictions that the 𝚃𝚂𝚌𝚑𝚎𝚍 layer must adhere to. The layer contains
the same primitive domain as that of 𝙲𝚂𝚌𝚑𝚎𝚍 (see Definition 4).

Definition 4 (Primitive Domain in 𝙲𝚂𝚌𝚑𝚎𝚍 and 𝚃𝚂𝚌𝚑𝚎𝚍). For any primi-
tive ID (𝑓𝑖𝑑), the following should hold:

(𝑓𝑖𝑑, _) ∈ 𝙲𝚂𝚌𝚑𝚎𝚍[_, _] ↔ (𝑓𝑖𝑑, _) ∈ 𝚃𝚂𝚌𝚑𝚎𝚍[_, _].

Both layers share the same set of primitives, but they exhibit distinct
behaviors for these primitives. Fig. 12 illustrates the evaluation of a
single thread on 𝚃𝚂𝚌𝚑𝚎𝚍 with HAsm. It starts with the thread’s proper
initial state, using the initial log of the parameterized thread. Notably,
scheduling primitive calls in 𝚃𝚂𝚌𝚑𝚎𝚍 differ significantly from those in
𝙲𝚂𝚌𝚑𝚎𝚍. In 𝚃𝚂𝚌𝚑𝚎𝚍, these calls consistently return control to the invok-
ing thread, updating its log with shared events representing potential
interleaving by other threads. Fig. 13 defines the 𝚢𝚒𝚎𝚕𝚍 transition rules
and the initial state of HAsm. Unlike the 𝚢𝚒𝚎𝚕𝚍 transition rules in Fig. 3,
which update the state while preserving the local state (except for
updating the PC value in the register set), these rules only update the
log, leaving the local state unchanged. The initial state of the function
relies on two auxiliary functions, 𝖨𝖯𝖣𝗍𝗁𝗋𝖽 and 𝖨𝖯𝖢𝗍𝗁𝗋𝖽, to accurately
assign the initial state for thread 𝑡𝑖𝑑.
11
5.2. Refinement proof and top-level theorem

𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌 establishes a formal connection between two template
layers, 𝚃𝙻𝚒𝚗𝚔[𝑡𝑖𝑑, 𝜀𝚃𝙻𝚒𝚗𝚔𝑡𝑖𝑑 ] on STAsm, and 𝚃𝚂𝚌𝚑𝚎𝚍[𝑡𝑖𝑑, 𝜀𝚃𝚂𝚌𝚑𝚎𝚍𝑡𝑖𝑑 ] on HAsm.
This step necessitates an additional relation akin to 𝙰𝚋𝚜𝚁𝚎𝚕𝙲 in
Lemma 1, bridging the semantic gap between template layer definitions
and machine states. To this end, 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌 defines an abstract rela-
tion called 𝙰𝚋𝚜𝚁𝚎𝚕𝚃. Unlike 𝙰𝚋𝚜𝚁𝚎𝚕𝙲, relations in 𝙰𝚋𝚜𝚁𝚎𝚕𝚃 are mostly
straightforward due to the similarity of the two layer interfaces. Both
interfaces deal with states for single threads, treating other threads’
evaluations as environmental steps, although state representations and
rules for these environmental steps may vary slightly due to differences
in primitive sets and state/transition definitions between template lay-
ers and machine models. For instance, ‘‘HAsm’’ does not have explicit
yield evaluation rules; instead, it relies on a user-defined specification
in a 𝚃𝚂𝚌𝚑𝚎𝚍 layer. The contextual refinement between these two layer
interfaces is outlined in Lemma 4, with the full definitions and proofs
available online [25].

Lemma 4. For any program 𝙿, a thread ID 𝑡𝑖𝑑, two template layer in-
terfaces (𝚃𝙻𝚒𝚗𝚔 and 𝚃𝚂𝚌𝚑𝚎𝚍), environmental contexts (𝜀𝚃𝙻𝚒𝚗𝚔𝑡𝑖𝑑 and 𝜀𝚃𝚂𝚌𝚑𝚎𝚍𝑡𝑖𝑑 ),
and a refinement relation 𝑅(HAsm,STAsm), the following holds:

[[𝚃𝙻𝚒𝚗𝚔[𝑡𝑖𝑑, 𝜀𝚃𝙻𝚒𝚗𝚔𝑡𝑖𝑑 ]⟨𝙿⟩]]STAsm ⊑𝑅(HAsm,STAsm)

[[𝚃𝚂𝚌𝚑𝚎𝚍[𝑡𝑖𝑑, 𝜀𝚃𝚂𝚌𝚑𝚎𝚍𝑡𝑖𝑑 ]⟨𝙿⟩]]HAsm

With the assumption that two layers with two different machines
(𝚃𝚂𝚌𝚑𝚎𝚍[𝑡𝑖𝑑, 𝜀𝚃𝚂𝚌𝚑𝚎𝚍𝑡𝑖𝑑 ] ⊢HAsm and 𝚃𝙻𝚒𝚗𝚔[𝑡𝑖𝑑, 𝜀𝚃𝙻𝚒𝚗𝚔𝑖𝑡𝑑 ] ⊢STAsm) satisfies the
relation 𝙰𝚋𝚜𝚁𝚎𝚕𝚃 and 𝑅(HAsm,STAsm) includes 𝑑𝑎𝑡𝑎(HAsm,STAsm) in it.

Similar to Lemma 1, users later have to provide 𝑑𝑎𝑡𝑎(HAsm,STAsm).
They also have to provide the evidence of 𝙰𝚋𝚜𝚁𝚎𝚕𝚃 based on program-
specific definitions that correspond to template layers, 𝚃𝚂𝚌𝚑𝚎𝚍 and
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𝚃𝙻𝚒𝚗𝚔. However, when users instantiate placeholders for those tem-
plate layers and the refinement relation between them, 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌
automatically offers a contextual refinement lemma with their con-
crete definitions. With all those steps, 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌 provides the top-level
heorem of the thread abstraction process, and Theorem 5 depicts
he top-level property that 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌 provides. We omit 𝙰𝚋𝚜𝚁𝚎𝚕𝙲 and
𝚋𝚜𝚁𝚎𝚕𝚃 in the statement for simplicity.

heorem 5 (Multithreaded Linking). For any program 𝙿, a CPU ID
𝑖𝑑, one thread ID 𝑡𝑖𝑑 runs on CPU 𝑐𝑖𝑑, two template layer interfaces
𝙲𝚂𝚌𝚑𝚎𝚍 and 𝚃𝚂𝚌𝚑𝚎𝚍), environmental contexts (𝜀𝙲𝚂𝚌𝚑𝚎𝚍𝑐𝑖𝑑 and 𝜀𝚃𝚂𝚌𝚑𝚎𝚍𝑡𝑖𝑑 ), and
refinement relation 𝑅𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌, the following holds:

[𝙲𝚂𝚌𝚑𝚎𝚍[𝑐𝑖𝑑, 𝜀𝙲𝚂𝚌𝚑𝚎𝚍𝑐𝑖𝑑 ]⟨𝙿⟩]]LAsm ⊑𝑅𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌

[𝚃𝚂𝚌𝚑𝚎𝚍[𝑡𝑖𝑑, 𝜀𝚃𝚂𝚌𝚑𝚎𝚍𝑡𝑖𝑑 ]⟨𝙿⟩]]HAsm
ith the assumption that 𝑅𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌 = 𝑅(HAsm,STAsm) ◦ 𝑅(STAsm,MTAsm) ◦

(MTAsm,MTAsm) ◦ 𝑅(MTAsm,LAsm).

roof. Applying Lemmas 2, 4, 1, and 3 directly justify the theorem.

. Example

We extend CertiKOS [14] by incorporating 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌, demonstrat-
ng how 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌 enhances verified software by introducing thread
bstraction through thread-local layer interfaces. CertiKOS is well-
egarded for its comprehensive functional correctness and includes
arious shared components, such as memory management modules and
n IPC module with synchronization capabilities via condition vari-
bles, organized within a layered framework. To integrate 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌
nto CertiKOS, we have made structural adjustments to align with the
ormat depicted in Fig. 2.

We divided CertiKOS into two parts: CertiKOScpu and CertiKOSthrd.
he first part is built around a shim layer that offers TCB primitives, en-
bling functionalities beyond what CompCert instructions provide (e.g.,
etch and increase operations). CertiKOScpu then offers the top-layer
nterface 𝙿𝙱𝚃𝚑𝚛𝚍, which includes thread libraries like thread spawn,
ield, sleep, and wake up. CertiKOSthrd focuses on delivering thread-
ocal services such as IPC, trap handling, and system call dispatch while
oncealing the behaviors of other threads within its environmental
ontext. The bottom layer of CertiKOSthrd corresponds to 𝙿𝙷𝚃𝚑𝚛𝚍. These
wo layers, 𝙿𝙱𝚃𝚑𝚛𝚍 and 𝙿𝙷𝚃𝚑𝚛𝚍, map to 𝙲𝚂𝚌𝚑𝚎𝚍 and 𝚃𝚂𝚌𝚑𝚎𝚍 in Fig. 2,
espectively. We employ 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌 to connect them through contextual
efinement proofs.

To achieve our goal, a series of tasks must be completed. First,
e need to establish precise definitions for the placeholders within

emplate layer definitions, specifically 𝙲𝚂𝚌𝚑𝚎𝚍, 𝚃𝙻𝚒𝚗𝚔, and 𝚃𝚂𝚌𝚑𝚎𝚍.
ollowing this, we must create abstract definitions essential for in-
ermediate machine models, as depicted in Fig. 7. Additionally, we
re required to instantiate the placeholders for template refinement
elations, 𝙰𝚋𝚜𝚁𝚎𝚕𝙲 and 𝙰𝚋𝚜𝚁𝚎𝚕𝚃, with concrete definitions. Lastly, we
eed to provide the necessary primitive-wise proofs to demonstrate the
eliance of 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌 on these definitions, with particular emphasis on
12

𝚋𝚜𝚁𝚎𝚕𝙲 and 𝙰𝚋𝚜𝚁𝚎𝚕𝚃. Among them, our initial task involves defining a
Fig. 14. Auxiliary function Implementations in CertiKOS.

he 𝙿𝙷𝙱𝚃𝚑𝚛𝚍 layer for CertiKOS, corresponding to 𝚃𝙻𝚒𝚗𝚔, since concrete
ersions of the 𝙲𝚂𝚌𝚑𝚎𝚍 and 𝚃𝚂𝚌𝚑𝚎𝚍 layers already exist. This step
lso encompasses the instantiation of various components upon which
𝙷𝙱𝚃𝚑𝚛𝚍 relies, including different data types, thread configurations,

nd auxiliary functions, all detailed in Fig. 7.
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Fig. 15. Parts of 𝑑𝑎𝑡𝑎 (MTAsm,LAsm) in CertiKOS.

Fig. 14 highlights key auxiliary functions employed in CertiKOS
hen integrated with 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌. Consider 𝖨𝖯𝖣𝗍𝗁𝗋𝖽 (line 15), which
etermines how each CertiKOS thread computes its individual thread
rivate state. Initially, it checks if the thread is an init thread (line
6). For init threads, it directly returns an appropriate initial private
tate (𝐼(𝑚)) since they start with a predefined system initial state.
owever, for non-init threads, it invokes thrd_init_pd_search (line
) to search for the corresponding thread spawn event in the initial
og. If such an event exists (lines 8–10) and spawns the thread (curid
= snap.res in line 10), the function calls cal_init_pd (line 2)
o dynamically allocate the initial private data. This process updates
he thread’s container with five elements (AC_{\mathrm{thrd}}:
mkContainer q 0 parent nil true)), representing maximum page
uota, current page usage, parent thread ID, a list of children, and a
lag indicating thread initialization. It also assigns user context informa-
ion from the corresponding thread spawn function call. Additionally,
𝗉𝖽𝖺𝗍𝖾 outlines how the log update function is defined. Given a shared
tate and a log, it iterates through the log, updating the shared state
ased on a case analysis of each event. For instance, line 21 utilizes
hread_spawn_spec_share to specify how a thread spawn opera-
ion affects the shared state. We also provide proofs for fundamental
roperties, such as ensuring the current thread ID always resides in
thrd. These properties are crucial for 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌 to establish a thread
bstraction theorem.

Extending CertiKOS with 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌 involves relating primitive call
ransitions across three layers with different machine models. 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌
rovides crucial guidance through abstract relations 𝙰𝚋𝚜𝚁𝚎𝚕𝙲 and
𝚋𝚜𝚁𝚎𝚕𝚃 (covered in sections 4.1.3 and 5.2). Establishing these re-
ations also requires defining two underlying refinement relations,

𝑑𝑎𝑡𝑎(MTAsm,LAsm) and 𝑑𝑎𝑡𝑎((HAsm,STAsm)), with a segment shown in
ig. 15. Within this framework, the relation (line 10) handles relations
or all objects within CertiKOS. While relations for most objects in
bstract states, such as the current CPU ID value (line 12), are straight-
orward, those affected by thread spawning and system initialization,
13

ike the container object relation (line 1 and 10), necessitate meticulous (
Table 1
Statistics for 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌.

Components LOC

Spec. Proof

Auxiliary Func./Thread Conf. 538 60
Languages 2,017 1,803
Refinement Proofs 2,906 7465

case analyses. These analyses depend on thread IDs, the overall system’s
initialization, and individual thread initialization specifics. Properties
related to the multiple private states of all threads are also vital, ensur-
ing proper segmentation of CPU-local states into distinct thread private
states. For instance, CertiKOS, supporting dynamic page allocation,

andates mutual exclusiveness of page permission table updates (line
5) to divide a single page permission table within a CPU-local state
nto multiple tables, each linked to corresponding threads on the CPU.

Concrete definitions for 𝙰𝚋𝚜𝚁𝚎𝚕𝙲 and 𝙰𝚋𝚜𝚁𝚎𝚕𝚃 are also essential.
hile these processes are intricate and system-specific, 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌 of-

ers valuable guidance and generic proofs. We envision 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌

s broadly applicable, extending beyond CertiKOS to similar proofs
equiring thread abstraction, akin to those within CertiKOS. Lastly,
e present the top-level thread abstraction theorem for CertiKOS with
𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌 in Theorem 6, accessible online [26].

heorem 6 (Thread Abstraction in CertiKOS). For any context program
, a CPU ID 𝑐𝑖𝑑, a thread ID 𝑡𝑖𝑑 runs on the CPU, two layer interfaces
𝙿𝙱𝚃𝚑𝚛𝚍 and 𝙿𝙷𝚃𝚑𝚛𝚍), environmental contexts (𝜀𝙿𝙱𝚃𝚑𝚛𝚍𝑐𝑖𝑑 and 𝜀𝙿𝙷𝚃𝚑𝚛𝚍𝑡𝑖𝑑 ), and
refinement relation 𝑅𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌(CertiKOS), the following holds:

[𝙿𝙱𝚃𝚑𝚛𝚍[𝑐𝑖𝑑, 𝜀𝙿𝙱𝚃𝚑𝚛𝚍𝑐𝑖𝑑 ]⟨(|𝙿|)⟩]]LAsm ⊑𝑅𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌(CertiKOS)

[𝙿𝙷𝚃𝚑𝚛𝚍[𝑡𝑖𝑑, 𝜀𝙿𝙷𝚃𝚑𝚛𝚍𝑡𝑖𝑑 ]⟨(|𝙿|)⟩]]HAsm

roof. With the given CertiKOS specific thread configurations, aux-
liary functions, and instances of 𝙰𝚋𝚜𝚁𝚎𝚕𝙲 and 𝙰𝚋𝚜𝚁𝚎𝚕𝚃, proving the
heorem is straightforward with Theorem 5.

. Evaluation

.1. Proof efforts

Table 1 provides statistics regarding the proof efforts associated
ith 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌. We have crafted 598 lines of code encompassing aux-

liary functions and thread configurations, serving as placeholders for
efinement proofs of target software (e.g., CertiKOS). In addition, 3,820
ines of code pertain to language definitions. It is worth noting that

significant portion of these definitions align with 𝙰𝚜𝚖 definitions
n CompCert, meaning the actual effort required for defining these
anguages is not extensive. We have future plans to efficiently man-
ge duplicate parts shared between machine models in 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌 and
𝚜𝚖 within CompCert. These line numbers also cover code for basic
roperties of these languages, including receptiveness and determinism,
o support basic small step libraries in CompCert. Employing these
efinitions, we have created a refinement library capable of linking
𝚂𝚌𝚑𝚎𝚍 on HAsm with 𝙲𝚂𝚌𝚑𝚎𝚍 on LAsm. Importantly, these proofs and
efinitions are program-independent, making them highly reusable for
sers.

Table 2 provides insights into our CertiKOS adaptation with
𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌 for thread abstraction in CCAL. We instantiated three key

ayers: 𝙿𝙱𝚃𝚑𝚛𝚍, 𝙿𝙷𝙱𝚃𝚑𝚛𝚍, and 𝙿𝙷𝚃𝚑𝚛𝚍, corresponding to 𝙲𝚂𝚌𝚑𝚎𝚍, 𝚃𝙻𝚒𝚗𝚔,
nd 𝚃𝚂𝚌𝚑𝚎𝚍, respectively.

The table breaks down the lines of code (LOC) for Memory Accessor,
pec., and Layer Def. These aspects pertain to each layer’s definition
n CCAL. Each layer definition encompasses three crucial components:
1) memory accessor definitions, which detail memory load and store
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Table 2
Statistics for linking example with CertiKOS.

Components LOC Components LOC

Spec. Proof Spec. Proof

Mem. Accessor (𝙿𝙱𝚃𝚑𝚛𝚍) 815 372 Mem. Accessor (𝙿𝙷𝙱𝚃𝚑𝚛𝚍) 748 361
Mem. Accessor (𝙿𝙷𝚃𝚑𝚛𝚍) 845 402 Spec. (𝙿𝙱𝚃𝚑𝚛𝚍) 2,692 N/A
Spec. (𝙿𝙷𝙱𝚃𝚑𝚛𝚍) 1,878 N/A Spec. (𝙿𝙷𝚃𝚑𝚛𝚍) 2,582 N/A
Layer Def.a (𝙿𝙱𝚃𝚑𝚛𝚍) 850 339 Layer Def.a 𝙿𝙷𝙱𝚃𝚑𝚛𝚍) 723 225
Layer Def.a (𝙿𝙷𝚃𝚑𝚛𝚍) 773 335 Aux. Func./Thrd Conf. Instance 1,628 1,451
Refinement Proofs (Low)b 3,487 18,545 Refinement Proofs (High)c 975 4,616

a Including invariant proofs.
b Refinement proofs between 𝙿𝙱𝚃𝚑𝚛𝚍 and 𝙿𝙷𝙱𝚃𝚑𝚛𝚍 (Instance of 𝙰𝚋𝚜𝚁𝚎𝚕𝙲).
c Refinement proofs between 𝙿𝙷𝙱𝚃𝚑𝚛𝚍 and 𝙿𝙷𝚃𝚑𝚛𝚍 (Instance of 𝙰𝚋𝚜𝚁𝚎𝚕𝚃).
Fig. 16. Top-level yield specifications for two distinct versions of CertiKOS.

Fig. 17. Disjoint property of memory permissions defined in the instance of 𝙰𝚋𝚜𝚁𝚎𝚕𝙲.

semantics, (2) specifications of layer-specific primitives, and (3) the
actual layer definition.

For our thread abstraction task, we meticulously addressed all three
components for each layer. These tasks can be demanding due to the
need for copying and manual rewriting, mainly driven by inconsis-
tencies in abstract data definitions across layers. Yet, many of these
definitions closely resemble each other. For example, memory accessor
definitions remain highly similar across layers, differing mainly in the
abstract data they employ. The instantiation of auxiliary functions,
thread configurations, and basic properties spans 3,079 lines of code,
as reflected in the Aux. Func./Thrd Conf. Instance column.

The most intricate part lies in the refinement proofs, demonstrating
14

that our layer definitions align with 𝙰𝚋𝚜𝚁𝚎𝚕𝙲 and 𝙰𝚋𝚜𝚁𝚎𝚕𝚃. While
these sections are extensive, part of the complexity arises from the
layers’ size. The 𝙿𝙷𝙱𝚃𝚑𝚛𝚍 layer, for instance, boasts 65 primitives. This
implies that 𝙿𝙱𝚃𝚑𝚛𝚍 and 𝙿𝙷𝚃𝚑𝚛𝚍 together encompass approximately 67
primitives, encompassing functions like yield and sleep. Furthermore,
𝙰𝚋𝚜𝚁𝚎𝚕𝙲 and 𝙰𝚋𝚜𝚁𝚎𝚕𝚃 incorporate memory accessor assumptions be-
tween layers. Despite the volume, the proof efforts for each primitive
reasonably match their complexity.

7.2. Experience report

There are two key advantages of the extended version of CertiKOS
over its previous version. The enhanced CertiKOS with 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌 offers
simplified and thread-local specifications for primitives by concealing
interleaving and intertwined behaviors among multiple threads in the
system. Additionally, it inherently ensures thread isolation properties
during the proof of thread abstraction.

The critical part demonstrating the concealment of interleaving and
intertwined behaviors lies in specifications of scheduling primitives
that are revealed to user programs. The formal differences have al-
ready been discussed, as illustrated in the variances between Figs. 3
and 13, but Fig. 16 highlights the distinctions between them. In
Fig. 16(a), the previous version unveils various unnecessary details to
users, including context switching ({kctxt: curid_context)} and
restored_context), updated information in the thread control block
({abtcb: new_tcb}), and the alteration of the thread ID due to the
scheduling ({cid: scheduled_thread}). In this sense, this approach
fails to deliver thread-local behavior to each user that runs on top of
CertiKOS. At least at the specification level, all user programs on the
same CPU expose intricate information updated during their schedul-
ing, revealing the scheduling path and state updates in between their
scheduling. This makes specifications for users unnecessarily complex
and may require additional proofs to show exclusiveness for parts of
resources that are not shared by other threads in the same CPU.

However, the specification of our extended version in Fig. 16(b)
solely updates the log during the transition while maintaining the
current thread ID unchanged. Also, it does not perform context switch-
ing as parts of scheduling. Therefore, this specification offers a much
simpler behavior to each user compared to the previous version. It
also serves as the key to providing an isolated view for each thread.
Unlike the previous version, users are unaware of which threads are
scheduled between their executions. Moreover, the context of each
thread is concealed from others in the specification itself, enabling an
intuitive and natural achievement of the isolation property for kernel
resources.

This was not available in the previous version. The same principle
for thread isolation is applicable to more complex shared resources,
such as memory, even though their properties should be specified
as parts of the refinement relation 𝙰𝚋𝚜𝚁𝚎𝚕𝙲 and be shown that all
transitions and states satisfy those properties during the proof. For
instance, Fig. 17 displays a segment of the refinement relation in the
instance of 𝙰𝚋𝚜𝚁𝚎𝚕𝙲. It indicates that page permission pools pd1 and

pd2 for two threads, t1 and t2, possess a disjoint property. This
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implies that if one memory page (p) is used in one thread (ZMap.
get p (pperm pd1) <> PGUndef), the other does not utilize the page
(ZMap.get p (pperm pd2) = PGUndef).

However, incorporating 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌 into CertiKOS also necessitated
additional efforts, as elaborated in Section 7.1. Porting the CertiKOS
proof to 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌 took three person-months, quite efficient given the
massive scale of the CertiKOS proof, which exceeds 250,000 lines of
Coq code, including the new thread abstraction proof integrated with
𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌. During this process, we went through multiple iterations,
primarily focusing on specifications, refinements, and layer linking
proofs.

A major challenge revolved around segregating the abstract data
nd global log in 𝙿𝙱𝚃𝚑𝚛𝚍 into their counterparts in 𝙿𝙷𝙱𝚃𝚑𝚛𝚍. With over
5 sub-objects in 𝙿𝙱𝚃𝚑𝚛𝚍, it was crucial to correctly divide them into
hread-local private data and shared data (the global log in 𝙿𝙱𝚃𝚑𝚛𝚍).
his required an in-depth understanding of how each primitive in the

ayer affected the fields in the abstract data. For instance, redefining
bstract data related to certain primitives, like page allocation with a
wo-level page table or thread spawn, demanded unraveling intricate
elationships among multiple fields.

Another formidable task was establishing the refinement relation
etween the CPU-local abstract data and the thread-local abstract
ata, which was associated with dynamic initial state allocation and
ock operations (IPC channel) for each thread. These sections required
xhaustive case analyses to account for all scenarios in which the sys-
em modified them. Nevertheless, despite these intricate dependencies
esulting in multiple iterations, most proofs followed straightforward
aths. Out of 65 primitive cases, only eight posed complex challenges
ue to intricate state update dependencies. For the rest, providing
vidence for 𝙰𝚋𝚜𝚁𝚎𝚕𝙲 and 𝙰𝚋𝚜𝚁𝚎𝚕𝚃 was relatively straightforward, as
hey impacted only limited portions of the abstract states.

We believe that the challenges we encountered are common in
he verification of complex software, especially when people hope to
rovide strong invariants such as thread isolation on shared resources,
s we have demonstrated.

.3. Limitations of 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌

𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌 has limitations to consider. A significant issue relates to
emory allocation within thread-local layers linked with CCAL proofs.
hese layers, positioned between 𝚃𝚂𝚌𝚑𝚎𝚍 and 𝐿𝙰𝙿𝙸, cannot allocate
ew memory blocks. This limitation leads to larger layers linked using
𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌 (e.g., 𝙲𝚂𝚌𝚑𝚎𝚍 and 𝚃𝚂𝚌𝚑𝚎𝚍), such as 𝙿𝙱𝚃𝚑𝚛𝚍 and 𝙿𝙷𝚃𝚑𝚛𝚍 in
ertiKOS. Users may need to adjust certified layers or refactor code,
s we did in CertiKOS. Despite these constraints, we successfully inte-
rated all previously verified services from the original CertiKOS into
ur ported version.

Additionally, our framework assumes cooperative scheduling, with
reemption not fully explored in the current version, as we do not
ee it as essential. Automation is another challenge, resulting in larger
efinement proofs. For instance, we have repetitive routines in re-
inement proofs, verifying that each primitive adheres to calling con-
entions. Enhanced proof automation could significantly reduce proof
izes. Nonetheless, our framework and case study demonstrate that
reating a certified thread-local library interface is feasible with rea-
onable effort.

. Related work and conclusion

rogram logics for shared-memory concurrency. Several program log-
cs [3–5,27–41] have been proposed as modular formal verification
echniques for shared-memory concurrent programs. Some of these
rogram logics [32,37] support higher-order functions and sophisti-
ated non-blocking synchronization. RefinedC [42] proposes separation
15

ogic-based proof automation for complex program design patterns n
ith concurrency. Although neither our tool nor CCAL currently ad-
ress these patterns, extending 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌 and CCAL to handle them
s a promising future direction, as demonstrated by a recent work,
CR [43], which shows how separation logic and contextual refinement
roofs can be incorporated for program verification. Several previous
orks have used a concept similar to logs in our system. For exam-
le, Total-TaDA [39] can be used to prove the total correctness of
oncurrent programs, but it has not been mechanized in any proof
ssistant.

The recent work by Song et al. [43] presents a novel approach for
modular formal verification framework called Conditional Contextual
efinement (CCR). This approach offers a richer level of expressiveness
ompared to CCAL and 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌 as it allows for dynamic alloca-
ion and mutual recursion. Additionally, it strives to enhance the
utomation of proofs by combining separation logic with contextual
efinement-style proofs. However, it is worth noting that the handling
f concurrency is still a work in progress for the CCR tool, and the
aper does not delve into investigating the underlying machine model
hanges caused by software schedulers, unlike 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌. One of our
uture research goals is to explore the integration of our approach
ith CCR. Cuellar [44] introduces a concurrency semantics called the
oncurrent Permission Machine (CPM) for CompCert, which enables
equential reasoning for program optimizations. Notably, they address
ertain limitations of CCAL by allowing dynamic memory allocations.
heir model incorporates catch-fire semantics, employing locks to pre-
ent race conditions. Additionally, they present a variant of concurrent
eparation logic that can be applied to demonstrate the absence of
aces in a given program. While their work offers a novel approach
o verifying concurrent programs, it does not provide a methodology
or altering the underlying assembly model during the verification of a
ingle target software, as 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌 does.

arallel composition in concurrent program verification. Most concur-
ent languages, for both distributed memory and shared memory, use

parallel composition command, (𝐶1|𝐶2), to create and terminate
ew threads. The composition command combines proofs for multiple
hreads and is key to demonstrating the correctness of the entire system.
𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌 proofs inherently include a composition command and the
orrectness of composition for multiple threads. Our parallel layer
omposition occurs in the specific layer 𝚃𝙻𝚒𝚗𝚔 and is embedded in
emma 1, and the composition must always be done over the entire
rogram 𝑃 and over all members of 𝐷thrd.

Liang et al. [7,11,45,46] developed several methodologies based
n rely-guarantee-based simulation (RGSim) for supporting parallel
omposition and contextual refinement of concurrent programs. The
ontextual refinement proof in 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌 is a variance of RGSim. It ex-
ends RGSim by adding auxiliary states, such as environmental contexts
nd shared logs, which are essential to our 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌 framework. In
ddition, most existing RGSim systems are limited to reasoning about
tomic objects in a single layer since their client program context
annot be the method body of another concurrent object. In this sense,
hey cannot support view changes in 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌, which require a vertical
omposition of multiple layers.

One recent study [46] proposes a method for specifying and ver-
fying the progress of concurrent objects with partial methods, but
he mechanized proof is beyond the scope of their research and they
o not provide formal linking for view changes. The Bedrock [12]
roject provides a verified toolkit for multithreaded programs, allowing
ynamic allocation and connection of thread-local services and un-
erlying library components. However, it lacks support for building
hread-local interfaces that can handle view changes, which is a key
eature of 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌. Furthermore, a recent study [47] showcases the
pplication of linearizability to intricate concurrent software. However,
t has not been integrated into any formal verification toolkit, such as
CAL. In another work, Lee et al. [48] introduce a novel generic fair-
ess semantics for concurrent objects, along with illustrative small-scale
xamples. These developments present an opportunity to potentially
treamline proofs within 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌, although further investigations are

eeded to confirm this potential benefit.
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Extending compcert and verified compilation. Compositional CompCert
[49] extends the original CompCert compiler [50] to support compo-
sitional thread-safe compilation of concurrent Clight programs. They
introduced an interaction semantics approach, following Beringer et al.
[51], which treats synchronization-primitive calls as external calls.
However, their work does not support a layered language like CCAL,
nd thus cannot be directly connected to 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌 nor support view
hanges inside it. Additionally, their work did not investigate con-
urrency, despite their interaction model being designed for shared-
emory concurrency support. While Kang et al. [52] and Ramananan-
ro et al. [53] also modified the CompCert compiler for separate
ompilation and composition, they did not support concurrency. Simi-
arly, CompCertM[54] and CompCertO[55] propose verified compilers
ased on CompCert that generalize compositionality of modular com-
ilation, but they do not focus on the view change as 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌 does.
ther works on verified compilation [56–59] do not support concurrent
nd/or compositional programs.

ultithreaded library (kernel) verification. There is a significant amount
f work related to kernel verification. For instance, seL4 [60,61],
erve [62], and hyperkernel [63] have addressed multithreaded library
kernel) verification. Xu et al. [40] developed a new verification frame-
ork by combining RGSim and Feng et al.’s program logic [64] to

eason about interrupts. They verified multiple key modules written
n C in 𝜇C/OS-II, a preemptive kernel. However, it is important to
ote that their research has a distinct focus compared to ours. They
oncentrate on constructing a formal semantics of a C subset and
erifying nested interrupts within that formal model. In contrast, our
pproach takes the verification process down to the assembly level,
hich is crucial for scheduling primitives due to the necessity of
andling context switching that violates C calling conventions and
equires direct manipulation of registers. Additionally, their work pri-
arily aims to demonstrate the correctness of their low-level code
ithout incorporating concurrent abstractions related to threads, as is

upported by 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌. In this regard, their work aligns more closely
ith the earlier version of CertiKOS before the introduction of the
𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌 extension. Nevertheless, we believe that their exploration of
reemptive scheduling in their work could serve as a valuable reference
or extending 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌 to encompass richer scheduling primitives,
hich are currently absent in our framework.

Some others, such as seL4 [60], Verve [62], and hyperkernel [63],
imed to prove several properties based on a single-threaded or lim-
ted concurrency support model using a per-core big kernel lock. The
erisoft team also verified spinlocks in a hypervisor using VCC [65],
here they directly postulated a Hoare logic instead of building on
perational semantics for C. However, none of these works deal with a
iew change caused by the software scheduler, which we have demon-
trated in our case study. Furthermore, SeKVM [16] and its associated
esearch [66] have demonstrated the correctness of a portion of the
VM hypervisor using CCAL. While their work operates within a
elaxed memory model environment, it does not primarily emphasize
hread abstractions. Incorporating these studies as additional examples
ithin our framework is also a future area of exploration.

. Conclusion

This paper presents 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌, a generic framework for constructing
ertified thread-local interfaces that support dynamic thread initial
tates, based on the verification toolkit CCAL [10]. 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌 in-
roduces intermediate machine models that decouple the states and
ransition rules owned by a CPU into separate states and transition
ules for each CPU, with abstractions for other threads. It also provides
ontextual refinement proofs and templates that can be applied to
ultiple layers with a few restrictions. This enables the gluing of two
ifferent certified layers in CCAL, where one layer is parameterized
y one CPU and the other by one thread. To achieve this, 𝖳𝗁𝗋𝖾𝖺𝖽𝖠𝖻𝗌
16
eparates the core part of thread abstraction from program-specific
arts, defines multiple abstract definitions, intermediate languages,
nd generic thread abstraction proofs that can be instantiated by any
rogram that uses the framework. The methodology is demonstrated
y porting CertiKOS, a formally verified operating system with CCAL,
o the framework.

As a future direction, we aim to remove the assumptions under-
ying the framework and proofs and improve the expressiveness and
utomation of the framework. We also plan to simplify the framework
tself.
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