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Abstract

Complete formal verification of a non-trivial concurrent
OS kernel is widely considered a grand challenge. We
present a novel compositional approach for building cer-
tified concurrent OS kernels. Concurrency allows inter-
leaved execution of kernel/user modules across different
layers of abstraction. Each such layer can have a different
set of observable events. We insist on formally specifying
these layers and their observable events, and then verify-
ing each kernel module at its proper abstraction level. To
support certified linking with other CPUs or threads, we
prove a strong contextual refinement property for every
kernel function, which states that the implementation of
each such function will behave like its specification under
any kernel/user context with any valid interleaving. We
have successfully developed a practical concurrent OS
kernel and verified its (contextual) functional correctness
in Coq. Our certified kernel is written in 6500 lines of
C and x86 assembly and runs on stock x86 multicore
machines. To our knowledge, this is the first proof of
functional correctness of a complete, general-purpose
concurrent OS kernel with fine-grained locking.

1 Introduction

Operating System (OS) kernels and hypervisors form
the backbone of safety-critical software systems in the
world. Hence it is highly desirable to formally verify the
correctness of these programs [53]. Recent efforts [33,
58, 34, 25, 23, 13, 5, 14] have shown that it is feasible
to formally prove the functional correctness of simple
general-purpose kernels, file systems, and device drivers,
but none of these systems have addressed the important
issues of concurrency [31, 7], which include not just user
and I/O concurrency on a single CPU, but also multicore
parallelism with fine-grained locking. This severely limits
the applicability and power of today’s formally verified
system software.

What makes the verification of concurrent OS kernels
so challenging? First, concurrent kernels allow inter-
leaved execution of kernel/user modules across differ-
ent abstraction layers; they contain many interdependent
components that are difficult to untangle. Several re-
searchers [55, 51] believe that the combination of con-
currency and the kernels’ functional complexity makes
formal verification of functional correctness intractable,
and even if it is possible, its cost would far exceed that of
verifying a single-core sequential kernel.

Second, concurrent kernels need to support all three
types of concurrency (user, I/O, or multicore) and make
them work coherently with each other. User and I/O con-
currency rely on thread yield/sleep/wakeup primitives or
interrupts to switch control and support synchronization;
these constructs are difficult to reason about since they
transfer control from one thread to another. Multicore
concurrency with fine-grained locking requires sophisti-
cated spinlock implementations such as MCS locks [46],
which are also hard to verify.

Third, concurrent kernels should also guarantee that
each of their system calls eventually returns, but this de-
pends on the progress of the concurrent primitives used
in the kernels. Proving starvation-freedom [28] for con-
current objects only became possible recently [40]. Stan-
dard Mesa-style condition variables [35] do not guarantee
starvation-freedom; this can be fixed by using a FIFO
queue of condition variables, but the solution is not trivial
and even the popular, most up-to-date OS textbook [7,
Fig. 5.14] has gotten it wrong [6].

Fourth, given the high cost of building concurrent ker-
nels, it is important that they can be quickly adapted to
support new hardware platforms and applications [8, 45,
20]. One advantage of a certified kernel is the formal
specification for all of its components. In theory, this al-
lows us to add certified kernel plug-ins as long as they do
not violate any existing invariants. In practice, however,
if we are unable to encapsulate interference, even a small
edit could incur huge verification overhead.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation    653



In this paper, we present a novel compositional ap-
proach that tackles all these challenges. We believe that,
to control the complexity of concurrent kernels and to
provide strong support for extensibility, we must first
have a compositional specification that can untangle all
the kernel interdependencies and encapsulate interference
among different kernel objects. Because the very purpose
of an OS kernel is to build layers of abstraction over bare
machines, we insist on meticulously uncovering and spec-
ifying these layers, and then verifying each kernel module
at its proper abstraction level.

The functional correctness of an OS kernel is often
stated as a refinement. This is shown by building forward
simulation [44] from the C/assembly implementation of a
kernel (K) to its abstract functional specification (S). Of
course, the ultimate goal of having a certified kernel is to
reason about programs running on top of (or along with)
the kernel. It is thus important to ensure that given any
kernel extension or user program P, the combined code
K&P also refines S&P. If this fails to hold, the kernel is
simply still incorrect since P can observe some difference
between K and S. Gu et al. [23] advocated proving such a
contextual refinement property, but they only considered
the sequential contexts (i.e., P is sequential).

For concurrent kernels, proving the contextual refine-
ment property becomes essential. In the sequential setting,
the only way that the context code P can interfere with the
kernel K is when K fails to encapsulate its private state;
that is, P can modify some internal state of K without K’s
permission. In the concurrent setting, the environment
context (ε) of a running kernel K could be other kernel
threads or a copy of K running on another CPU. With
shared-memory concurrency, the interference between ε

and K are both necessary and often common; the sequen-
tial atomic specification S is now replaced by the notion
of linearizability [29] plus a progress property such as
starvation-freedom [28].

In fact, linearizability proofs often require event re-
ordering that preserves the happens-before relation, so
K&ε may not even refine S&ε . Contextual refinement in
the concurrent setting requires that for any ε , we can find a
semantically related ε

′ such that K&ε refines S&ε
′. Sev-

eral researchers [22, 42, 40] have shown that contextual
refinement is precisely equivalent to the linearizability and
progress requirements for implementing compositional
concurrent objects [28, 29].

Our paper makes the following contributions:

• We present CertiKOS—a new extensible architecture
for building certified concurrent OS kernels. CertiKOS
uses contextual refinement over the “concurrent” envi-
ronment contexts (ε) as the unifying formalism for com-
posing different concurrent kernel/user objects at differ-
ent abstraction levels. Each ε defines a specific instance
on how other threads/CPUs/devices respond toward the

events generated by the current running threads. Each
abstraction layer, parameterized over a specific ε , is
an assembly-level machine extended with a particular
set of abstract objects (i.e., abstract states plus atomic
primitives). CertiKOS successfully decomposes an oth-
erwise prohibitive verification task into many simple
and easily automatable ones.

• We show how the use of an environment context at
each layer allows us to apply standard techniques for
verifying sequential programs to verify concurrent pro-
grams. Indeed, most of our kernel programs are writ-
ten in a variant of C (called ClightX) [23], verified
at the source level, and compiled and linked together
using CompCertX [23, 24]—a thread-safe version of
the CompCert compiler [37, 38]. As far as we know,
CertiKOS is the first architecture that can truly build
certified concurrent kernels and transfer global prop-
erties proved for programs (at the kernel specification
level) down to the concrete assembly machine level.

• We show how to impose temporal invariants over these
environment contexts so we can verify the progress of
various concurrent primitives. For example, to verify
the starvation-freedom of ticket locks or MCS locks,
we must assume that the multicore hardware (or the
OS scheduler) always generates a fair interleaving, and
those threads/CPUs which requested locks before the
current running thread will eventually acquire and then
release the lock. In a separate paper [24], we present the
formal theory of environment contexts and show how
these assumptions can be discharged when we compose
different threads/CPUs to form a complete system.

• Using CertiKOS, we have successfully developed a
fully certified concurrent OS kernel (called mC2) in the
Coq proof assistant [2]. Our kernel supports both fine-
grained locking and thread yield/sleep/wakeup prim-
itives, and can run on stock x86 multicore machines.
It can also double as a hypervisor and boot multiple
instances of Linux in guest VMs running on different
CPUs. Our certified hypervisor kernel consists of 6500
lines of C and x86 assembly. The entire proof effort for
supporting concurrency took less than 2 person years.
To our knowledge, this is the first proof of functional
correctness of a complete, general-purpose concurrent
OS kernel with fine-grained locking.

The rest of this paper is organized as follows. Section 2
gives an overview of our new CertiKOS architecture. Sec-
tion 3 shows how we use environment contexts to turn
concurrent layers into sequential ones. Section 4 presents
the design and development of the mC2 kernel and how
we verify various concurrent kernel objects. Section 5
presents an evaluation of CertiKOS. Sections 6-7 discuss
related work and then conclude.
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Figure 1: Certified OS kernels: what to prove?

2 Overview of Our Approach

The ultimate goal of research on building certified OS
kernels is not just to verify the functional correctness of
a particular kernel, but rather to find the best OS design
and development methodologies that can be used to build
provably reliable, secure, and efficient computer systems
in a cost-effective way. We enumerate a few important
dimensions of concerns and evaluation metrics which we
have used so far to guide our work toward this goal:

• Support for new kernel design. Traditional OS ker-
nels use the hardware-enforced “red line” to define a
single system call API. A certified OS kernel opens up
the design space significantly as it can support multiple
certified kernel APIs at different abstraction levels. It is
important to support kernel extensions [9, 20, 45] and
novel ring-0 or guest-domain processes [30, 8] so we
can experiment and find the best trade-offs.

• Kernel performance. Verification should not impose
significant overhead on kernel performance. Of course,
different kernel designs may imply different perfor-
mance priorities. An L4-like microkernel [43] focuses
on fast inter-process communication (IPC), while a
Singularity-like kernel [30] emphasizes efficient sup-
port for type-safe ring-0 processes.

• Verification of global properties. A certified kernel
is much less interesting if it cannot be used to prove
global properties of the complete system built on top
of the kernel. Such global properties include not only
safety, liveness, and security properties of user-level
processes and virtual machines, but also resource usage
and availability properties (e.g., to counter denial-of-
service attacks).

• Quality of kernel specification. A good kernel specifi-
cation should capture precisely the contextually observ-
able behaviors of the implementation [23]. It must sup-
port transferring global properties proved at a high ab-
straction level down to any lower abstraction level [16].

• Cost of development and maintenance. Composi-
tionality is the key to minimize such cost. If the ma-
chine model is stable, verification of each kernel module

Figure 2: Contextual refinement between concurrent layers

should only need to be done once (to show that it im-
plements its deep functional specification [23]). Global
properties (e.g., information flow security) should be
derived from the kernel deep specification alone [16].

• Quality of formal proofs. We use the term cer-
tified kernels rather than verified kernels to empha-
size the importance of third-party machine-checkable
proof certificates [53]. Hand-written paper proofs are
error-prone [32]. Program verification without explicit
machine-checkable proof objects has been subject to
significant controversy [17].

Overview of CertiKOS Our new CertiKOS architec-
ture aims to address all these concerns and also tackle the
challenges described in Section 1. The CertiKOS archi-
tecture leverages the new certified programming method-
ologies developed by Gu et al. [23, 24] and applies them
to support building certified concurrent OS kernels.

A certified abstraction layer consists of a language con-
struct (L1,M,L2) and a mechanized proof object showing
that the layer implementation M, built on top of the in-
terface L1 (the underlay), is a contextual refinement of
the desirable interface L2 above (the overlay). A deep
specification (L2) of a module (M) captures everything
contextually observable about running the module over
its underlay (L1). Once we have certified M with a deep
specification L2, there is no need to ever look at M again,
and any property about M can be proved using L2 alone.

In Figure 1, we use x86mc to denote an assembly-level
multicore machine. Suppose we load such a machine with
the mC2 kernel K (in assembly) and user-level assembly
code P, and we use [[⋅]]x86mc to denote the whole-machine
semantics for x86mc, then proving any global property of
such a complete system amounts to reasoning about the
semantic object [[K&P]]x86mc, i.e., the set of observable
behaviors from running K&P on x86mc.

Reasoning at such a low level is difficult, so we formal-
ize a new mC2 machine that extends the x86mc machine
with the (deep) high-level specification of all system calls
implemented by K. We use [[⋅]]mC2 to denote its whole-
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Figure 3: System architecture for the mC2 kernel

machine semantics. The contextual refinement property
about the mC2 kernel can be stated as:

∀P, [[K&P]]x86mc ⊑ [[P]]mC2

Hence any global property proved about [[P]]mC2 can be
transferred to [[K&P]]x86mc.

To support concurrency, for each layer interface L, we
parameterize it with an active thread set A and then care-
fully define its set of valid environment contexts, denoted
as EC(L,A). Each environment context ε captures a spe-
cific instance—from a particular run—of the list of events
that other threads or CPUs (i.e., those not in A) return
when responding to the events generated by those in
A. We can then define a new thread-modular machine
ΠL(A)(P,ε) that will operate like the usual assembly ma-
chine when P switches control to those threads in A, but
will only obtain the list of events from the environment
context ε when P switches control to those outside A. The
semantics for a concurrent layer machine L is then:

[[P]]L(A) = { ΠL(A)(P,ε) ∣ ε ∈ EC(L,A) }

To support parallel layer composition, we carefully design
EC(L,A) so that the following property holds:

[[P]]L(A∪B) = [[P]]L(A) ∩ [[P]]L(B) if A∩B =∅

The formal details for EC(L,A) and [[⋅]]L(A) are pre-
sented in a separate paper [24]. Note that if A is a single-
ton, for each ε , ΠL(A) behaves like a sequential machine.

With our new compositional layer semantics, we can
take a multicore machine like x86mc and zoom into a
specific active CPU i by creating a logical “single-core”
machine layer for CPU i, and then apply techniques from
Gu et al. [23] to build a collection of certified “sequen-
tial” (per-CPU) layers (see Figure 2). When we want
to introduce kernel- or user-level threads, we can fur-
ther zoom into a particular thread (e.g., i0) and create

a corresponding logical machine layer. We can impose
specific invariants over the environment contexts (i.e., the
“rely” conditions) and use them to ensure that per-CPU
or per-thread reasoning can be soundly composed (when
their “rely” conditions are compatible with each other).
After we have added all the kernel components and im-
plemented all the system calls, we can combine these
per-thread machines into a single concurrent machine.

Under CertiKOS, building a new certified concurrent
kernel (or experimenting with a new design) is just a
matter of composing a collection of certified concurrent
layers, developed in a variant of C (called ClightX) or as-
sembly. Gu et al. [23] have developed a certified compiler
(CompCertX) that can compile certified ClightX layers
into certified assembly layers. Since all concurrent primi-
tives in CertiKOS are treated as CompCert-style external
calls or built-ins, they cannot be reordered or optimized
away by the compiler. Memory accesses over these ex-
ternal calls cannot be reordered either. Therefore, each
concurrent ClightX module (running over a particular per-
thread or per-CPU layer) is compiled by CompCertX as
if it were a sequential program performing many external-
call events. The correctness of CompCertX guarantees
that the generated x86 assembly behaves the same as the
source ClightX module. CompCertX can therefore serve
as a thread-safe version of CompCert.

CertiKOS can thus enjoy the full programming power
of both an ANSI C variant and an assembly language to
certify any efficient routines required by low-level kernel
programming. The layer mechanism allows us to certify
most kernel components at higher abstraction levels, even
though they all eventually get mapped (or compiled) down
to an assembly machine.

Overview of the mC2 kernel Figure 3 shows the sys-
tem architecture of mC2. The mC2 system was initially
developed in the context of a large DARPA-funded re-
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search project. It is a concurrent OS kernel that can also
double as a hypervisor. It runs on an Unmanned Ground
Vehicle (UGV) with a multicore Intel Core i7 machine.
On top of mC2, we run three Ubuntu Linux systems as
guests (one each on the first three cores). Each virtual
machine runs several RADL (The Robot Architecture
Definition Language [39]) nodes that have fixed hardware
capabilities such as access to GPS, radar, etc. The kernel
also contains a few simple device drivers (e.g., interrupt
controllers, serial and keyboard devices). More complex
devices are either supported at the user level, or passed
through (via IOMMU) to various guest Linux VMs. By
running different RADL nodes in different VMs, mC2
provides strong isolation support so that even if attackers
take control of one VM, they still cannot break into other
VMs to compromise the overall mission of the UGV.

Within mC2, we have various shared objects such as
spinlock modules (Ticket, MCS), sleep queues (SleepQ)
for implementing queueing locks and condition variables,
pending queues (PendQ) for waking up a thread on an-
other CPU, container-based physical and virtual mem-
ory management modules (Container, PMM, VMM), a
Lib Mem module for implementing shared-memory IPC,
synchronization modules (FIFOBBQ, CV), and an IPC
module. Within each core (the purple box), we have
the per-CPU scheduler, the kernel-thread management
module, the process management module, and the virtual-
ization module (VM Monitor). Each kernel thread has its
own thread-control block (TCB), context, and stack.

What have we proved? Using CertiKOS, we have suc-
cessfully built a fully certified version of the mC2 kernel
and proved its contextual refinement property with re-
spect to a high-level deep specification for mC2. This
important functional correctness property implies that all
system calls and traps will strictly follow the high-level
specification and always run safely and terminate even-
tually; and there will be no data race, no code injection
attacks, no buffer overflows, no null pointer access, no
integer overflow, etc.

More importantly, because for any program P, we have
[[K&P]]x86mc refines [[P]]mC2, we can also derive the
important behavior equivalence property for P, that is,
whatever behavior a user can deduce about P based on the
high-level specification for the mC2 kernel K, the actual
linked system K&P running on the concrete x86mc ma-
chine would indeed behave exactly the same. All global
properties proved at the system-call specification level
can be transferred down to the lowest assembly machine.

Assumptions and limitations The mC2 kernel is obvi-
ously not as comprehensive as real-world kernels such
as Linux. The main goal of this paper is to show that
it is feasible to build certified concurrent kernels with
fine-grained locking. We did not try to incorporate all the
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Figure 4: Defining concurrent abstraction layers

latest advances for multicore kernels into mC2.
Our assembly machine assumes strong sequential con-

sistency for all atomic instructions. We believe our proof
should remain valid for the x86 TSO model because (1) all
our concurrent layers guarantee that non-atomic memory
accesses are properly synchronized; and (2) the TSO order
guarantees that all atomic synchronization operations are
properly ordered. Nevertheless, more formalization work
is needed to turn our proofs over sequential-consistent
machines into those over the TSO machines [55].

Since our machine does not model TLB, any code for
addressing TLB shootdown cannot be verified.

The mC2 kernel currently lacks a certified storage sys-
tem. We plan to incorporate recent advances in building
certified file systems [13, 5] into mC2 in the near future.

Our assembly machine only covers a small part of the
full x86 instruction set, so our contextual correctness re-
sults only apply to programs in this subset. Additional
instructions can be easily added if they have simple or
no interaction with our kernel. Costanzo et al. [16, Sec.
6] shows how the fidelity of the CompCert-style x86 ma-
chine model would impact the formal correctness or secu-
rity claims, and how such gap can be closed.

The CompCertX assembler for converting assembly
into machine code is unverified. We assume correctness of
the Coq proof checker and its code extraction mechanism.

The mC2 kernel also relies on a bootloader, a PreInit
module (which initializes the CPUs and the devices), and
an ELF loader. Their verification is left for future work.

3 Layer Design with Environment Context

In this section, we explain the general layer design princi-
ples and show how we use environment context to convert
a concurrent layer into CPU-local layers.

Multicore hardware allows all the CPUs to access
the same piece of memory simultaneously. In CertiKOS,
we logically distinguish the private memory (i.e., pri-
vate to a CPU or a thread) from the shared memory (i.e.,
shared by multiple CPUs or threads). The private memory
does not need to be synchronized, whereas non-atomic
shared memory accesses need to be protected by some
synchronization mechanisms (e.g., locks), which are nor-
mally implemented using atomic hardware instructions
(e.g., fetch-and-add). With proper protection, each shared
memory operation can be viewed as if it were atomic.
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Atomic object is an abstraction of well-synchronized
shared memory, combined with operations that can be
performed over that shared memory. It consists of a set
of primitives, an initial state, and a logical log containing
the entire history of the operations that were performed
on the object during an execution. Each primitive invoca-
tion records a single corresponding event in the log. We
require that these events contain enough information so
we can derive the current state of each atomic object by
replaying the entire log over the object’s initial state.

Concurrent layer interface contains both private ob-
jects (e.g., i in Fig. 4) and atomic objects (e.g., j in Fig. 4),
along with some invariants imposed on these objects. The
verification of a concurrent kernel requires repeatedly
building certified abstraction layers. The overlay inter-
face L2 is a new and more abstract interface, built on top
of the underlay interface L1, and implemented by module
Mi or M j (cf. Fig. 4). Private objects only access pri-
vate memory and are built following techniques similar
to those presented by Gu et al. [23]. Atomic objects are
implemented by shared modules (e.g., M j in Fig. 4) that
may access existing atomic objects, private objects, and
non-atomic shared memory.

Every atomic primitive in the overlay generates exactly
one event (this is why it is really atomic), while its imple-
mentation may trigger multiple events (by calling multiple
atomic primitives in the underlay).

It is difficult to build certified abstraction layers di-
rectly on a multicore, nondeterministic hardware model.
To construct an atomic object, we must reason about its
implementation under all possible interleavings and prove
that every access to shared memory is well synchronized.

In the rest of this section, we first present our x86 mul-
ticore machine model (Πx86mc), and then show how we
gradually refine this low-level model into a more abstract
machine model (Πloc) that is suitable for reasoning about
concurrent code in a CPU-local fashion.

3.1 Multicore hardware model

Our fine-grained multicore hardware model (Πx86mc)
allows arbitrary interleavings at the level of assem-
bly instructions. At each step, the hardware non-
deterministically chooses one CPU and executes the next
assembly instruction on that CPU. Each assembly instruc-
tion is classified as atomic, shared, or private, depending
on whether the instruction involves an atomic object call,
a non-atomic shared memory access, or only a private
object/memory access. One interleaving of an example
program running on two CPUs is as follows:

atom1

private1 atom2

shared1CPU0

CPU1

shared1

private2

atom1

private1 atom2

shared1

CPU1

shared1

private2

atom1 shared1CPU0 pull1 push1 

local 
block 1

shared1 

invalid

x
shared 
block 1 invalid

x y z invalid

zinvalid invalid

pull

operation to local copy

push

atom1 shared1 CPU0 pull1 push1shared1 

atom1 shared1 CPU0 pull1 push1 shared1

atom1 shared1 CPU0 pull1 push1shared1

shuffle

atom1 shared1CPU0 pull1 push1shared1

merge adjacent

CPU0

switch

switch
event

returned
events

Since only atomic operations generate events, this inter-
leaving produces the logical log [0.atom1,1.atom2].

3.2 Machine model with hardware scheduler

As a first step toward abstracting away the low-level de-
tails of the concurrent CPUs, we introduce a new machine
model (Πhs) configured with a hardware scheduler (εhs)
that specifies a particular interleaving for an execution.
This results in a deterministic machine model. To take
a program from Πx86mc and run it on top of Πhs, we in-
sert a logical switch point (denoted as “▶”) before each
assembly instruction. At each switch point, the machine
first queries the hardware scheduler and gets the CPU ID
that will execute next. All the switch decisions made by
εhs are stored in the log as switch events. The previous
example on Πx86mc can be simulated by the following εhs:

atom1

private1 atom2

shared1CPU0

CPU1

shared1

private2

atom1

private1 atom2

shared1

CPU1

shared1

private2

atom1 shared1CPU0 pull1 push1 

local 
block 1

shared1 

invalid

x
shared 
block 1 invalid

x y z invalid

zinvalid invalid

pull

operation to local copy

push

atom1 shared1 CPU0 pull1 push1shared1 

atom1 shared1 CPU0 pull1 push1 shared1

atom1 shared1 CPU0 pull1 push1shared1

shuffle

atom1 shared1CPU0 pull1 push1shared1

merge adjacent

CPU0

switch

switch
event

returned
events

The log recorded by this execution is as follows (a switch
from CPU i to j is denoted as i↪ j):

[0↪ 0,0.atom1,0↪ 1,1↪ 1,1↪ 1,1.atom2,1↪ 0,0↪ 0,0↪ 1]

The behavior of running a program P over this model
with a hardware scheduler εhs is denoted as Πhs(P,εhs),
indicating that it is parametrized over all possible εhs. Let
EChs represent the set of all possible hardware schedulers.
Then we define the whole-machine semantics:

[[P]]hs = { Πhs(P,εhs) ∣ εhs ∈ EChs }

Note this is a special case of the definition in Section 2
for the whole-machine semantics of a concurrent layer
machine, where the active set is the set of all CPUs. To
ensure correctness of this machine model with respect
to the hardware machine model, we prove that Πx86mc
contextually refines the new model. Before we state the
property, we first define contextual refinement formally.

Definition 1 (Contextual Refinement). We say that layer
L0 contextually refines layer L1 (written as ∀P,[[P]]L0 ⊑

[[P]]L1), if and only if for any P that does not go wrong
on ΠL1 under any configuration, we also have that (1) P
does not go wrong on ΠL0 under any configuration; and
(2) any observable behavior of P on ΠL0 under some con-
figuration is also observed on ΠL1 under some (possibly
different) configuration.

Lemma 1 (Correctness of the hardware scheduler model).

∀P,[[P]]x86mc ⊑ [[P]]hs
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Figure 5: The contextual refinement chain from multicore hardware model Πx86mc to CPU-local model Πloc

3.3 Machine with local copy of shared memory

The above machine model does not restrict any access to
the shared memory. We therefore abstract the machine
model with hardware scheduler into a new model that
enforces well-synchronized accesses to shared memory.

In addition to the global shared memory concurrently
manipulated by all CPUs, each CPU on this new machine
model (Πlcm) also maintains a local copy of shared mem-
ory blocks along with a valid bit. The relation between a
CPU’s local copy and the global shared memory is main-
tained through two new logical primitives pull and push.

The pull operation over a particular CompCert-style
memory block [37] updates a CPU’s local copy of that
block to be equal to the one in the shared memory, mark-
ing the local block as valid and the shared version as
invalid. Conversely, the push operation updates the
shared version to be equal to the local block, marking the
shared version as valid and the local block as invalid.

If a program tries to pull an invalid shared memory
block, push an invalid local block, or access an invalid
local block, the program goes wrong. We make sure
that every shared memory access is always performed
on its valid local copy, thus systematically enforcing
valid accesses to the shared memory. Note that all of
these constructions are completely logical, and do not
correspond to any physical protection mechanisms; thus
they do not introduce any performance overhead.

The shared memory updates of the previous example
can be simulated on Πlcm as follows:

atom1

private1 atom2

shared1CPU0

CPU1
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private1 atom2
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shared1
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atom1 shared1CPU0 pull1 push1 
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CPU0

switch

switch
event

returned
events

Data-race freedom Among each shared memory block
and all of its local copies, only one can be valid at any
single moment of machine execution. Therefore, for any
program P with a potential data race, there exists a hard-
ware scheduler such that P goes wrong on Πlcm. By
showing that a program P is safe (never goes wrong) on
Πlcm for all possible hardware schedulers, we guarantee
that P is data-race free.

We have shown (in Coq) that Πlcm is correct with re-
spect to the previous machine model Πhs with the EChs.

Lemma 2 (Correctness of the local copy model).

∀P,[[P]]hs ⊑ [[P]]lcm

3.4 Partial machine with environment context

Although Πlcm provides a way to reason about shared
memory operations, it still does not have much support
for CPU-local reasoning. To achieve modular verification,
the machine model should provide a way to reason about
programs on each CPU locally by specifying expected
behaviors of the context programs on other CPUs. The
model should then provide a systematic way to link the
proofs of different local components together to form a
global claim about the whole system. To this purpose,
we introduce a partial machine model Πpt that can be
used to reason about the programs running on a subset of
CPUs, by parametrizing the model over the behaviors of
an environment context (i.e., the rest of the CPUs).

We call a given local subset of CPUs the active CPU set
(denoted as A). The partial machine model is configured
with an active CPU set and it queries the environment
context whenever it reaches a switch point that attempts
to switch to a CPU outside the active set.

The set of environment contexts for A in this machine
model is denoted as EC(pt,A). Each environment context
εpt(A) ∈ EC(pt,A) is a response function, which takes the
current log and returns a list of events from the context
programs (i.e., those outside of A). The response function
simulates the observable behavior of the context CPUs
and imposes some invariants over the context. The hard-
ware scheduler is also a part of the environment context,
i.e., the events returned by the response function include
switch events. The execution of CPU 0 in the previous
example can be simulated with a εpt({0}) function:
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returned
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For example, at the 3rd switch point, εpt({0}) returns the
event list [0↪ 1,1↪ 1,1↪ 1,1.atom2,1↪ 0].

Composition of partial machine models Suppose we
have verified that two programs, separately running with
two disjoint active CPU sets A and B, produce event lists
satisfying invariants INVA and INVB, respectively. If INVA
is consistent with the environment-context invariant of

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation    659



B, and INVB is consistent with the environment-context
invariant of A, then we can compose the two separate
programs into a single program with active set A∪B. This
combined program is guaranteed to produce event lists
satisfying the combined invariant INVA∧INVB. Using the
whole-machine semantics from Section 2, we express this
composition as a contextual refinement.

Lemma 3 (Composition of partial machine models).

∀P,[[P]]pt(A∪B) ⊑ [[P]]pt(A)∩ [[P]]pt(B) if A∩B =∅

After composing the programs on all CPUs, the context
CPU set becomes empty and the composed invariant holds
on the whole machine. Since there is no context CPU, the
environment context is reduced to the hardware scheduler,
which only generates the switch events. In other words,
letting C be the entire CPU set, we have that EC(pt,C) =

EChs. By showing that this composed machine with the
entire CPU set C is refined by Πlcm, the proofs can be
propagated down to the multicore hardware model.

Lemma 4 (Correctness of the composed total machine).

∀P,[[P]]lcm ⊑ [[P]]pt(C)

3.5 CPU-local machine model

If we focus on a single active CPU i, the partial machine
model is like a local machine with an environment con-
text representing all other CPUs. However, in this model
there is a switch point before each instruction, so pro-
gram verification still needs to handle many unnecessary
interleavings (e.g., those between private operations). In
this subsection, we introduce a CPU-local machine model
(denoted as Πloc) for a CPU i, in which switch points
only appear before atomic or push/pull operations. The
switch points before shared or private operations are re-
moved via two steps: shuffling and merging.

Shuffling switch points In Πloc, we introduce a log
cache — for the switch points before shared and private
operations, the query results from the environment context
are stored in a temporary log cache. The cached events
are applied to the logical log just before the next atomic
or push/pull operation. Thus, when we perform shared
or private operations, the observations of the environment
context are delayed until the next atomic or push/pull
operation. This is possible because a shared operation can
only be performed when the current local copy of shared
memory is valid, meaning that no other context program
can interfere with the operation.

Merging switch points Once the switch points are
shuffled properly, we merge all the adjacent switch points
together. When we merge switch points, we also need to
merge the switch events generated by the environment

context. For example, the change of switch points for the
previous example on CPU-local machine is as follows:
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Lemma 5 (Correctness of CPU-local machine model).

∀P,[[P]]pt({i}) ⊑ [[P]]loc({i})

Finally, we obtain the refinement relation from the mul-
ticore hardware model to the CPU-local machine model
by composing all of the refinement relations together (cf.
Fig. 5). We introduce and verify the mC2 kernel on top of
the CPU-local machine model Πloc. The refinement proof
guarantees that the proved properties can be propagated
down to the multicore hardware model Πx86mc.

All our proofs (including every step in Fig. 5 and Fig. 2)
are implemented, composed, and machine-checked in
Coq. Each refinement step is implemented as a CompCert-
style upward-forward simulation from one layer machine
to another. Each machine contains the usual (CPU-local)
abstract state, a logical global log (for shared state), and
an environment context. The simulation relation is de-
fined over these two machine states, and matches well the
informal intuitions given in this and next sections.

4 Certifying the mC2 Kernel

Contextual refinement provides an elegant formalism for
decomposing the verification of a complex kernel into a
large number of small tractable tasks: we define a series
of logical abstraction layers, which serve as increasingly
higher-level specifications for an increasing portion of
the kernel code. We design these abstraction layers in a
way such that complex interdependent kernel components
are untangled and converted into a well-organized kernel-
object stack with clean specification (cf. Fig. 2).

In the mC2 kernel, the pre-initialization module is the
bottom layer that connects to the CPU-local machine
model Πloc, instantiated with a particular active CPU (cf.
Sec. 3.5). The trap handler contains the top layer that pro-
vides system call interfaces and serves as a specification
of the whole kernel, instantiated with a particular active
thread running on that active CPU. Our main theorem
states that any global properties proved at the topmost
abstraction layer can be transferred down to the lowest
hardware machine. In this section, we explain selected
components in more details.
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Each CPU-local pre-initialization machine defines the
x86 hardware behaviors including page table walk upon
memory load (when paging is turned on), saving and
restoring the trap frame in the case of interrupts and ex-
ceptions (e.g., page fault), and the data exchange between
devices and memory. The hardware memory manage-
ment unit (MMU) is modeled in a way that mirrors the
paging hardware (cf. Fig. 6a). When paging is enabled,
memory accesses made by both the kernel and the user
programs are translated using the page map pointed to by
CR3. When a page fault occurs, the fault information is
stored in CR2, the CPU mode is switched from user mode
to kernel mode, and the page fault handler is triggered.

The spinlock module provides fine-grained lock ob-
jects as the base of synchronization mechanisms.

Ticket Lock depends on an atomic ticket object, which
consists of two fields: ticket and now. Figure 7 shows
one implementation of a ticket lock. Here, L is declared
as an array of ticket locks; each shared data object can be
protected with one lock in the array, identified using a spe-
cific lock index (i). The atomic increment to the ticket is
achieved through the atomic fetch-and-increment (FAI)
operation (implemented using the xaddl instruction with
the lock prefix in x86). As described in Section 3.5,
the switch points at this abstraction level have been shuf-
fled and merged so that there is exactly one switch point
before each atomic operation. Thus, the lock implementa-
tions generate a list of events; for example, when CPU t
acquires the lock i (stored in L[i]), it continuously gen-
erates the event “t.get now i” (line 10) until the latest
now is increased to the ticket value returned by the event
“t.inc ticket i” (line 9), and then followed by the event
“t.pull i” (line 11):

wait_lock LHOLD

get_now iget_now iget_now iinc_ticket iCPUt

(9,5) (9,6) (9,8) (9,9)

enQ i 2CPU0

Queue i
observed
by CPU0

[3,2]

deQ i

[2,5][ ]

(myt, i.now)

returned
events

pull i

(9,9)

wait_lockCPUt wait_lock

LockOwnCPUt

CPUt acq_lock i

contextual refinement
The event list is as below:

[▶,t.inc ticket i,▶,t.get now i,⋯,▶,t.get now i]

Verifying the linearizability and starvation-freedom of
the ticket lock object is equivalent to proving that under a
fair hardware scheduler εhs, the ticket lock implementa-
tion is a termination-sensitive contextual refinement of its
atomic specification [42, 40]. There are two main proof

1 typedef struct {
2 volatile uint ticket;
3 volatile uint now;
4 } ticket_lock;
5 ticket_lock L[NUM_LOCK];
6

7 void acq_lock (uint i) {
8 uint t;

9 t=▶FAI(&L[i].ticket);
10 while(▶L[i].now!=t){}
11 ▶pull (i);
12 }
13 void rel_lock (uint i) {
14 ▶push (i);
15 ▶L[i].now ++;
16 }

Figure 7: Pseudocode of the ticket lock implementation

obligations: (1) the lock guarantees mutual exclusion, and
(2) the acq lock operation eventually succeeds.

Mutual exclusion is straightforward for a ticket lock.
At any time, only the thread whose ticket is equal
to the current serving ticket (i.e., now) can hold the
lock. Furthermore, each thread’s ticket is unique as
the fetch-and-increment operation is atomic (line 9).
Thanks to this mutual exclusion property, it is safe to pull
the shared memory associated with the lock i to the local
copy at line 11. Before releasing the lock, the local copy
is pushed back to the shared memory at line 14.

To prove that acq lock eventually succeeds, from the
fairness of εhs, we assume that between any two consec-
utive events from the same thread, there are at most m
events generated by other threads (for some m). We also
impose the following invariants on the environment:

Invariant 1 (Invariants for ticket lock). An environment
context that holds the lock i (1) never acquires lock i again
before releasing it; and (2) always releases lock i within
k steps (for some k).

Lemma 6 (Starvation-freedom of ticket lock). Acquiring
ticket-lock in the mC2 kernel eventually succeeds.

Proof. The full proofs are mechanized in Coq; here we
highlight the main ideas. Let n be the maximum number
of the total threads. Then (1) there are at most n threads
waiting before the current one; (2) the thread holding the
lock releases the lock within k steps, which generates at
most k events; and (3) the environment context generates
at most m events between each step of the lock holder.
Hence there are at most n×m× k events generated by
the context of the threads waiting before the current one.
Since the current thread belongs to this “context” and
each read to the now field generates one get now event,
there are at most n×m× k loop iterations at line 10 in
Fig. 7. Thus, acquiring lock always succeeds.
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After we abstract the lock implementation into an
atomic specification, each acquire-lock call in the higher
layers only generates a single event “t.acq lock i.” We
can compose such per-CPU specification with those of its
environment CPUs as long as they all follow Invariant 1.

MCS Lock is known to have better scalability than
ticket lock over machines with a larger number of CPUs.
In mC2, we have also implemented a version of MCS
locks [46]. The starvation-freedom proof is similar to that
of the ticket lock. The difference is that the MCS lock-
release operation waits in a loop until the next waiting
thread (if it exists) has added itself to a linked list, so we
need similar proofs for both acquire and release.

Physical memory management introduces the page
allocation table AT (with nps denoting the maximum phys-
ical page number). Since AT is shared among different
CPUs, we associate it with a lock lock AT. The page allo-
cator is then refined into an atomic object where the imple-
mentation for each of its methods (e.g., palloc in Fig. 8)
is proved to satisfy an atomic interface, with the proof
that lock utilization for lock AT satisfies Inv. 1. Once the
atomic allocator is introduced, lock acquire and release
for lock AT are not allowed to be invoked at higher lay-
ers. Thus, in this layered approach, it is not possible that
a thread holding a lock defined at a lower layer tries to
acquire another lock introduced at a higher layer, i.e., the
order that a thread acquires different locks is guided by
the layer order that the locks are introduced. This implicit
order of lock acquisitions prevents deadlocks in mC2.

Another function of the physical memory management
is to dynamically track and bound the memory usage of
each thread. A container object is used to record infor-
mation for each thread (array cn in Fig. 8); one piece of
information tracked is the thread’s quota. Inspired by the
notions of containers and quotas in HiStar [59], a thread
in mC2 is spawned with some quota specifying the maxi-
mum number of pages that the thread will ever be allowed
to allocate. As can be seen in Fig. 8, palloc returns an
error code if the requesting thread has no remaining quota
(lines 2 and 3), and the quota is decremented when a page
is successfully allocated (line 13). Quota enforcement
allows the kernel to prevent a denial-of-service attack,
where one thread repeatedly allocates pages and uses up
all available memory (thus denying other threads from
allocating pages). From a security standpoint [16], it also
prevents the undesirable information channel between
different threads that occurs due to such an attack.

Virtual memory management provides consecutive
virtual address spaces on top of physical memory man-
agement (see Fig. 6b), We prove that the primitives ma-
nipulating page maps are correct, and the initialization
procedure sets up the two-level page maps properly in
terms of the hardware address translation.

1 int palloc (uint tid) {
2 if (cn[tid].quota < 1)
3 return ERROR;
4 ▶acq_lock (lock_AT);
5 uint i=0,fp=nps;
6 while(fp==nps&&i<nps){
7 if (!AT[i].free)
8 fp = i;
9 i++; }

10 if (fp != nps) {
11 AT[i].free = 0;
12 AT[i].ref = 1;
13 cn[tid].quota --;
14 }
15 else fp = ERROR;
16 ▶rel_lock (lock_AT);
17 return fp;
18 }

Figure 8: Pseudocode of palloc

Invariant 2. (1) paging is enabled only after all the page
maps are initialized; (2) pages that store kernel-specific
data must have the kernel-only permission in all page
maps; (3) the kernel page map is an identity map; and (4)
non-shared parts of user processes’ memory are isolated.

By Inv. 2, we show that it is safe to run both the kernel
and user programs in the virtual address space when pag-
ing is enabled. In this way, memory accesses at higher
layers operate on the basis of the high-level, abstract de-
scriptions of address spaces rather than concrete page
directories and page tables stored in the memory itself.

Shared memory management provides a protocol to
share physical pages among different user processes. A
physical page can be mapped into multiple processes’
page maps. For each page, we maintain a logical owner
set. For example, a user process k1 can share its private
physical page i to another process k2 and the logical owner
set of page i is changed from {k1} to {k1,k2}. A shared
page can only be freed when its owner set is a singleton.

The shared queue library abstracts the queues imple-
mented as doubly-linked lists into abstract queue states
(i.e., Coq lists). The local enqueue and dequeue opera-
tions are specified over the abstract lists. As usual, we
associate each shared queue with a lock. The atomic
interfaces for shared queue operations are represented
by queue events “t.enQ i e” and “t.deQ i”, which can
be replayed to construct the shared queue. For instance,
starting from an empty initial queue, if the current log
of the i-th shared queue is [▶,t0.enQ i 2,▶,t0.deQ i],
and the event lists generated by the environment context
at two switch points are [t1.enQ i 3] and [t1.enQ i 5],
respectively, then the complete log for the queue i is:

[t1.enQ i 3,t0.enQ i 2,t1.enQ i 5,t0.deQ i]

By replaying the log, the shared queue state becomes
[2,5], and the last atomic dequeue operation returns 3.

Thread management introduces the thread control
block and manages the resources of dynamically spawned
threads (e.g., quotas) and their meta-data (e.g., children,
thread state). For each thread, one page (4KB) is allocated
for its kernel stack. We use an external tool [12] to show
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Figure 9: Scheduling routines yield, sleep, and wakeup

that the stack usage of our compiled kernel is less than
4KB, so stack overflows cannot occur inside the kernel.

One interesting aspect of the thread module is the con-
text switch function. This assembly function saves the
register set of the current thread and restores the register
set from the kernel context of another thread on the same
CPU. Since the instruction pointer register (EIP) and stack
pointer register (ESP) are saved and restored in this proce-
dure, this kernel context switch function is verified at the
assembly level, and linked with other code that is verified
at the C level and then compiled by CompCertX.

The thread scheduling is done by three primitives:
yield, sleep, and wakeup. They are implemented us-
ing the shared queue library (cf. Fig. 9). Each CPU has a
private ready queue ReadyQ and a shared pending queue
PendQ. The context CPUs can insert threads to the current
CPU’s pending queue. The mC2 kernel also provides a set
of shared sleeping queues SleepQs. As shown in Fig. 9,
yield moves a thread from the pending queue to the ready
queue and then switches to the next ready thread. The
sleep primitive simply adds the running thread to a sleep-
ing queue and runs the next ready thread. The wakeup
primitive contains two cases. If the thread to be woken
up belongs to the current CPU, then the primitive adds
the thread to its ready queue. Otherwise, wakeup adds
the thread to the pending queue of the CPU it belongs
to. Except for the ready queue, all the other thread queue
operations are protected by fine-grained locks.

Thread-local machine models can be built based on
the thread management layers. The first step is to extend
the environment context with a software scheduler (i.e.,
abstracting the concrete scheduling procedure), result-
ing in a new environment context εss. The scheduling
primitives generate the yield and sleep events and εss
responds with the next thread ID to execute. One invariant
we impose on εss is that a sleeping thread can be resched-
uled only after a wakeup event is generated. The second
step is to introduce the active thread set to represent the
active threads on the active CPU, and extend the εss with
the context threads, i.e., the rest of the threads running
on the active CPU. The composition structure is similar
to the one of Lemma 3. In this way, higher layers can
be built upon a thread-local machine model with a single
active thread on the active CPU (cf. Fig. 2).

1 struct fifobbq {
2 Queue insrtQ, rmvQ;
3 int n_rmv, n_insrt;
4 int front, next;
5 int T[MAX]; lock l;
6 } q;
7

8 void remove(){
9 uint cv, pos, t;

10 ▶acq_lock (q.l);
11 pos = q.n_rmv ++;
12 cv = my_cv ();
13 ▶enQ (q.rmvQ, cv);
14 while(q.front < pos ||
15 q.front == q.next)

16 ▶wait (cv, q.l);
17

18 t = q.T[q.front % MAX]
19 q.front ++;
20

21 cv=▶peekQ (q.insrtQ);
22 if (cv != NULL)
23 ▶signal (cv);
24 ▶deQ (q.rmvQ);
25 cv = ▶peekQ (q.rmvQ);
26 if (cv != NULL)
27 ▶signal (cv);
28 ▶rel_lock (q.l);
29 return t;
30 }

Figure 10: Pseudocode of the remove method for FIFOBBQ

Starvation-free condition variable A condition vari-
able (CV) is a synchronization object that enables a thread
to wait for a change to be made to a shared state (protected
by a lock). Standard Mesa-style CVs [35] do not guar-
antee starvation-freedom: a thread waiting on a CV may
not be signaled within a bounded number of execution
steps. We have implemented a starvation-free version of
CV using condition queues as shown by Anderson and
Dahlin [7, Fig. 5.14]. However, we have found a bug in
the FIFOBBQ implementation shown in that textbook: in
some cases, their system can get stuck by allowing all the
signaling and waiting threads to be asleep simultaneously,
or the system can arrive at a dead end where the threads
on the remove queue (rmvQ) can no longer be woken
up. We fixed this issue by postponing the removal of the
CV of a waiting thread from the queue, until the waiting
thread finishes its work (cf. Fig. 10); the remover is now
responsible for removing itself from the rmvQ (line 24)
and waking up the next element in the rmvQ (line 27).
Here, peekQ reads the head item of a queue; and my cv
returns the CV assigned to the current running thread.

5 Evaluation

Proof effort and the cost of change We take the certi-
fied sequential mCertiKOS kernel [23], and extend the ker-
nel with various features such as dynamic memory man-
agement, container support for controlling resource con-
sumption, Intel hardware virtualization support, shared
memory IPC, single-copy synchronous IPC, ticket and
MCS locks, new schedulers, condition variables, etc.
Some of these features were initially added in the se-
quential setting but later ported to the concurrent setting.
During this development process, many of our certified
layers (including their implementation, their functional
specification, and the layer refinement proofs) have un-
dergone many rounds of modifications and extensions.
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CertiKOS makes such evolution process much easier. For
example, all certified layers in the sequential kernel can
be directly ported to the concurrent setting if they do not
use any synchronization. We have also merged the work
by Chen et al. [14] on the interruptible kernel with device
drivers using our multicore model.

Overall, our certified mC2 kernel consists of 6500 lines
of C and x86 assembly. We have also developed a general
linking theorem for composing multiple threads running
on the same CPU, and another theorem for combining
programs running on different CPUs. Our team completed
the verification of the new concurrency framework and
features in about 2 person years.

Regarding specification, there are 943 lines of code
used to specify the lowest layer axiomatizing the hard-
ware machine model, and 450 lines of code for the speci-
fication of the abstract system call interfaces. These are in
our trusted computing base. We keep these specifications
small to limit the room for errors and ease the review
process. Outside the trusted computing base, there are
5249 lines of additional specifications for the various ker-
nel functions, and about 40K lines of code used to define
auxiliary definitions, lemmas, theorems, and invariants.
Additionally, there are 50K lines of Coq proof scripts for
proving the newly-added concurrency features. At least
one third of these auxiliary definitions and proof scripts
are redundant and semi-automatically generated, which
makes our proof a little verbose. For example, many in-
variant proofs get duplicated across the layers whenever
there is a minor change to the entire set of invariants. We
are currently working on a new layer calculus to minimize
redundant definitions and proofs.

Bugs found Other than the FIFOBBQ bug, we have
also found a few other bugs during verification. Our
initial ticket-lock implementation contains a particularly
subtle bug: the spinning loop body (line 10 in Fig. 7) was
implemented as while(▶L[i].now<t){}. This passed all
our tests, but during the verification, we found that it did
not satisfy the atomic specification since the ticket field
might overflow. For example, if L[i].ticket is (232−1),
acq lock will cause an overflow (line 9 in Fig. 7) and
the returned ticket t equals 0. In this case, L[i].now is
not less than t and acq lock returns immediately, which
violates the order implied by the ticket. We fixed this bug
by changing the loop body to “while(▶L[i].now!=t){}”;
we completed the proof by showing that the maximum
number of concurrent threads is far below 232.

Performance evaluation Although the performance is
not the main emphasis of this paper, we have run a number
of micro and macro benchmarks to measure the speedup
and overhead of mC2 and to compare mC2 to existing sys-
tems such as KVM and seL4. All experiments have been
performed on an Intel Core i7-2600S (2.8GHz, 4 cores)
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Figure 11: The comparison between actual efficiency of ticket
lock and MCS lock implementations in mC2

with 8 MB L3 cache, 16 GB memory, and a 120 GB Intel
520 SSD. Since the power control code has not been veri-
fied, we disabled the turbo boost and power management
features of the hardware during experiments.

Concurrency overhead The run-time overhead intro-
duced by concurrency in mC2 mainly comes from the
latency of spinlocks and the contention of the shared data.

The mC2 kernel provides two kinds of spinlocks: ticket
lock and MCS lock. They have the same interface and
thus are interchangeable. In order to measure their perfor-
mance, we put an empty critical section (payload) under
the protection of a single lock. The latency is measured
by taking a sample of 10,000 consecutive lock acquires
and releases (transactions) on each round.

Figure 11 shows the results of our latency measure-
ment. In the single core case, ticket locks impose 34
cycles of overhead, while MCS locks impose 74 cycles
(line chart). As the number of cores grows, the latency
increases rapidly. However, note that all transactions are
protected by the same lock. Thus, it is expected that the
slowdown should be proportional to the number of cores.
In order to show the actual efficiency of the lock imple-
mentations, we normalize the latency against the baseline
(single core) multiplied by the number of cores ( n∗t1

tn
). As

can be seen from the bar chart, efficiency remains about
the same for MCS lock, but decreases for ticket lock.

Now that we have compared MCS lock with ticket lock,
we present the remaining evaluations in this section using
only the ticket lock implementation of mC2.

To reduce contention, all shared objects in mC2 are
carefully designed and pre-allocated with a fine-grained
lock. We design a benchmark with server/client pairs
to evaluate the speedup of the system as more cores are
introduced. We run a pair of server/client processes on
each core, and we measure the total throughput (i.e., the
number of transactions that servers make in each millisec-
ond) across all available cores. A server’s transaction
consists of first performing an IPC receive from a channel
i, then executing a payload (certain number of ‘nop’ in-
structions), and finally sending a message to channel i+1.
Correspondingly, a client executes a constant payload of
500 cycles, sends an IPC message to channel i, and then
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Figure 12: Speedup of throughput of mC2 vs. mC2-bl in a
client/server benchmark under various server payloads (0-2,000)

receives its server’s message through channel i+1. When
the client has to wait for a reply from the server, the con-
trol is switched to a special system process which then
immediately yields back to the server process.

Figure 12 shows this server/client benchmark, com-
paring mC2 against a big-kernel-lock version of mC2
(mC2-bl). We insert a pair of lock acquire and release at
the top-most layer by hand, and replace all fine-grained
locks with an empty function. This does not introduce
bias because the speedup is normalized against its own
baseline (single core throughput) for each kernel version
separately. From the figure, we can see that the speedup
rate for big-kernel-lock is about 1.45x ∼ 1.66x with 2
cores and 1.64x ∼ 2.07x with 3 cores. On the other hand,
the fine-grained locks of mC2 yield better speedup as the
number of cores increases (roughly 1.77x ∼ 1.84x and
2.62x ∼ 2.71x with 2 and 3 cores, respectively). Note
that the server/client pairs are distributed into different
CPUs, and there is no cross core communication; there-
fore, one might expect perfect scaling as the number of
cores increases. We did not quite achieve this because
each core must execute some system processes which run
at constant rates and consume CPU resources, and we did
not align kernel data structures against cache-line size.

IPC Performance We measure the latency of IPC
send/recv in mC2 against various message sizes, and com-
pare the result with seL4’s IPC implementation.

A comparison of the performance of seL4 and mC2 is
not straightforward since the verified mC2 kernel runs on
a multicore x86 platform, while the verified seL4 kernel
runs on ARMv6 and ARMv7 hardware and only sup-
ports single-core. Thus, we use an unverified, single-
core version of seL4 for comparison. Moreover, the
synchronized IPC API in seL4 (Call/ReplyWait) has
a different semantics from mC2’s send/recv: it uses a
round-trip message passing protocol (with a one-off re-
ply channel created on the fly) while trapping into the
kernel twice, and it does not use any standard sleep
or wakeup procedures. To have a meaningful compar-
ison with respect to the efficiency of implementing sys-

Uncompress	LinuxCompile	LinuxApache	HTTPerfAvrora Batik Eclipse Fop H2
baremetial 9.755 6310 3077 40123 2007 16973
certikos 14.334 8380 3278 41930 2102 19381
kvm 13.252 8684 3707 147769 2188 17841
mC2 147% 108% 109.70% 133% 107% 105% 105% 114%
kvm 136% 109% 110.70% 138% 120% 368% 109% 105%

90%

100%

110%

120%

130%

140%

150% mC2

kvm

368%

DaCaPo Benchmark Set

Figure 13: Normalized performance for macro benchmarks
running over Linux on KVM vs. Linux on mC2; the baseline is
Linux on bare metal; a smaller ratio is better

tem calls, we compare (send + recv)× 2 of mC2 with
(Call+ReplyWait)+Null×2 of seL4, where Null is the
latency of a null system call in seL4.

We measure seL4’s performance using seL4’s IPC
benchmark sel4bench-manifest [3] with processes in dif-
ferent address spaces and with identical scheduler prior-
ities, both in slowpath and fastpath configurations. We
consulted the seL4 team [27] and used 158 cycles as the
cost of each null system call (Null) in seL4. To measure
mC2’s performance, we simply replace seL4’s Call and
ReplyWait system calls with mC2’s synchronous send and
receive calls. We found that, when the buffer size is zero,
mC2 takes about 3800 cycles to perform a round trip
IPC, while seL4’s fastpath IPC takes roughly 1200 cycles,
and seL4’s slowpath IPC takes 1800 cycles. When the
message size is larger than 2 words, the fastpath IPC of
seL4 falls back to the slowpath; in the 10-words IPC case,
mC2’s round trip IPC takes 3820 cycles, while seL4 takes
1830 cycles. Note that seL4 follows the microkernel de-
sign philosophy, and thus its IPC performance is critical.
IPC implementations in seL4 are highly optimized and
heavily tailored to specific hardware platforms.

Hypervisor Performance To evaluate mC2 as a hy-
pervisor, we measured the performance of some macro
benchmarks on Ubuntu 12.04.2 LTS running as a guest.
We ran the benchmarks on Linux as guest in both KVM
and mC2, as well as on the bare metal. The guest Ubuntu
is installed on an internal SSD drive. KVM and mC2 are
installed on a USB stick. We use the standard 4KB pages
in every setting — huge pages are not used.

Figure 13 contains a compilation of standard macro
benchmarks: unpacking of the Linux 4.0-rc4 kernel, com-
pilation of the Linux 4.0-rc4 kernel, Apache HTTPerf [47]
(running on loopback), and DaCaPo Benchmark 9.12 [11].
We normalize the running times of the benchmarks using
the bare metal performance as a baseline (100%). The
overhead of mC2 is moderate and comparable to KVM.
In some cases, mC2 performs better than KVM; we sus-
pect this is because KVM has a Linux host and thus has a
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larger cache footprint. For benchmarks with a large num-
ber of file operations, such as Uncompress Linux source
and Tomcat, mC2 performs worse. This is because mC2
expose the raw disk interface to the guest via VirtIO [52]
(instead of doing the pass-through), and its disk driver
does not provide good buffering support.

6 Related Work

Dijkstra [18, 19] proposed to “realize” a complex pro-
gram by decomposing it into a hierarchy of linearly or-
dered abstract machines. Based on this idea, the PSOS
team at SRI [48] developed the Hierarchical Develop-
ment Methodology (HDM) and applied it to design and
specify an OS using 20 hierarchically organized modules.
HDM was later also used for the KSOS system [50]. Gu
et al. [23] developed new languages and tools for build-
ing certified abstraction layers with deep specifications,
and showed how to apply the layered methodology to
construct fully certified (sequential) OS kernels in Coq.

Costanzo et al. [16] showed how to prove sophisticated
global properties (e.g., information-flow security) over
a deep specification of a certified OS kernel and then
transfer these properties from the specification level to
its correct assembly-level implementation. Chen et al.
[14] extended the layer methodology to build certified
kernels and device drivers running on multiple logical
CPUs. They treat the driver stack for each device as
if it were running on a logical CPU dedicated to that
device. Logical CPUs do not share any memory, and are
all eventually mapped onto a single physical CPU. None
of these systems, however, can support shared-memory
concurrency with fine-grained locking.

The seL4 team [33, 34] was the first to verify the
functional correctness and security properties of a high-
performance L4-family microkernel. The seL4 micro-
kernel, however, does not support multicore concurrency
with fine-grained locking. Peters et al. [51] and von Tessin
[55] argued that for an seL4-like microkernel, concurrent
data accesses across multiple CPUs can be reduced to
a minimum, so a single big kernel lock (BKL) might be
good enough for achieving good performance on mul-
ticore machines. von Tessin [55] further showed how
to convert the single-core seL4 proofs into proofs for a
BKL-based clustered multikernel.

The Verisoft team [49, 36, 4] applied the VCC frame-
work [15] to formally verify Hyper-V, which is a widely
deployed multiprocessor hypervisor by Microsoft consist-
ing of 100 kLOC of concurrent C code and 5 kLOC of as-
sembly. However, only 20% of the code is verified [15]; it
is also only verified for function contracts and type invari-
ants, not the full functional correctness property. There is
a large body of other work [10, 58, 25, 13, 26, 56, 5, 54]
showing how to build verified OS kernels, hypervisors,

file systems, device drivers, and distributed systems, but
they do not address the issues on concurrency.

Xu et al. [57] developed a new verification framework
by combining rely-guarantee-based simulation [41] with
Feng et al.’s program logic for reasoning about inter-
rupts [21]. They have successfully verified key modules
in the µC/OS-II kernel [1]. Their work supports preemp-
tion but only on a single-core machine. They have not
verified any assembly code nor connected their verified C-
like source programs to any certified compiler so there is
no end-to-end theorem about the entire kernel. They have
not proved any progress properties so even their verified
kernel modules or interrupt handlers could still diverge.

7 Conclusion

We have presented a novel extensible architecture for
building certified concurrent OS kernels that have not only
an efficient assembly implementation but also machine-
checkable contextual correctness proofs. OS kernels de-
veloped using our layered methodology also come with
a clean, rigorous, and layered specification of all kernel
components. We show that building certified concurrent
kernels is not only feasible but also quite practical. Our
layered approach to certified concurrent kernels replaces
the hardware-enforced “red line” with a large number of
abstraction layers enforced via formal specification and
proofs. We believe this will open up a whole new di-
mension of research efforts toward building truly reliable,
secure, and extensible system software.
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